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Abstract

We obtain new results on the Turán number of any bounded degree uniform hypergraph ob-
tained as the expansion of a hypergraph of bounded uniformity. These are asymptotically sharp
over an essentially optimal regime for both the uniformity and the number of edges and solve a
number of open problems in Extremal Combinatorics.

Firstly, we give general conditions under which the crosscut parameter asymptotically deter-
mines the Turán number, thus answering a question of Mubayi and Verstraëte. Secondly, we refine
our asymptotic results to obtain several exact results, including proofs of the Huang–Loh–Sudakov
conjecture on cross matchings and the Füredi–Jiang–Seiver conjecture on path expansions.

We have introduced two major new tools for the proofs of these results. The first of these,
Global Hypercontractivity, is used as a ‘black box’ (we present it in a separate paper with several
other applications). The second tool, presented in this paper, is a far-reaching extension of the
Junta Method, which we develop from a powerful and general technique for finding matchings in
hypergraphs under certain pseudorandomness conditions.

1 Introduction
A longstanding and challenging direction of research in Extremal Combinatorics, initiated by Turán
in the 1940’s, is that of determining the maximum size of a k-graph (k-uniform hypergraph) H ⊂

(
[n]
k

)
on n vertices not containing some fixed k-graph F ; this is the Turán number, denoted ex(n, F ). Turán
numbers of graphs (the case k = 2) are quite well-understood (if F is not bipartite), but there are very
few results even for specific hypergraphs, let alone general results for families of hypergraphs (see the
survey [27]).

In this paper we prove a number of general results on Turán numbers for the family of bounded
degree expanded hypergraphs (see Section 1.2), thus solving several open problems: a question of
Mubayi and Verstraëte relating asymptotics of the Turán number to the crosscut (see Theorem 1.4),
the Huang–Loh–Sudakov conjecture on cross matchings (see Theorem 1.2) and the Füredi–Jiang–Seiver
conjecture on path expansions (see Corollary 1.7).

A striking feature of our results is their applicability across an essentially optimal range of uni-
formities and sizes, which previously seemed entirely out of reach. This is achieved via two new
methods. The first is a new sharp threshold theorem (see Theorem 3.4) derived from our theory of
Global Hypercontractivity, which was presented in the first version of this paper (arXiv:1906.05568);
that method is now split off into a separate paper [29] with several other applications unrelated to the
questions of Extremal Combinatorics considered here. The second method is a far-reaching extension
of the Junta Method of Keller and Lifshitz [30] (which itself greatly extended the applications of an
approach initiated by Dinur and Friedgut [4]). A large part of the technical work in this paper goes
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into developing a powerful and general machinery for finding matchings in hypergraphs under certain
pseudorandomness conditions.

1.1 Cross matchings
Before introducing the general setting of expanded hypergraphs, we first consider an important case,
which is in itself a source of many significant problems, namely the problem of finding matchings. In
both theory and application, a wide range of significant questions can be recast as existence questions
for matchings (see e.g. the books [35, 39] and the survey [28]).

Perhaps the most well-known open question concerning matchings, due to Erdős [11], asks how large
a family F ⊂

(
[n]
k

)
can be if it does not contain an s-matching, i.e. sets {A1, . . . , As} with Ai ∩Aj = ∅

for all distinct i, j ∈ [s]. Two natural families of such F are stars Sn,k,s−1 :=
{
A ∈

(
[n]
k

)
: A∩[s−1] ̸= ∅

}
and cliques Ck,s−1 :=

(
[ks−1]

k

)
. Erdős conjectured that one of these families is always extremal.

Conjecture 1.1 (Erdős Matching Conjecture). Let n ≥ ks and suppose that F ⊂
(
[n]
k

)
does not

contain an s-matching. Then |F| ≤ max
{
|Sn,k,s−1|, |Ck,s−1|

}
.

This conjecture remains open, despite an extensive literature, of which we will mention a few
highlights. The case s = 2 is the classical Erdős–Ko–Rado theorem [12]. Erdős and Gallai [10]
confirmed the conjecture for k = 2. The case k = 3 was proven by Łuczak and Mieczkowska [37] for
large s and by Frankl [17] for all s. Bollobás, Daykin and Erdős [1] proved the conjecture provided
n = Ω(k3s), which was reduced to n = Ω(k2s) by Huang, Loh and Sudakov [24] and finally to n = Ω(ks)
by Frankl [13] (in fact to n ≳ 2ks, improved by Frankl and Kupavskii [16] to n ≥ 5ks/3 for large s),
which is the optimal order of magnitude for the extremal family to be a star rather than a clique – or
even to just contain s disjoint k-sets.

Our first result in this context is a cross version of that of Frankl, which proves (a strengthened
form of) a conjecture of Huang, Loh and Sudakov [24]. Here we say that families F1, . . . ,Fs cross
contains a hypergraph {A1, . . . , As} (e.g. an s-matching) if Ai ∈ Fi for each i ∈ [s].

Theorem 1.2. There is a constant C > 0 so that if n, s, k1, . . . , ks ∈ N with ki ≤ n
Cs and Fi ⊂

(
[n]
ki

)
with |Fi| ≥ |Sn,ki,s−1| for all i ∈ [s], either F1, . . . ,Fs cross contain an s-matching, or there is J ⊂ [n]

with |J | = s− 1 such that each Fi = Sn,ki,J := {A ∈
(
[n]
ki

)
: A ∩ J ̸= ∅}.

Remark 1.3. Theorem 1.2 in the case that all ki = k was proved by Huang, Loh and Sudakov [24]
for n = Ω(k2s) and recently by Frankl and Kupavskii [15] for n = Ω(ks log s); our result applies to
n = Ω(ks), which is the optimal order of magnitude. Subsequent to our work, a very different proof of
the Huang-Loh-Sudakov Conjecture has been given by Lu, Wang and Yu [36]. We also obtain a strong
stability result (see Theorem 6.1 below) which gives structural information even if we only assume that
the size of each family is within a constant factor of that of a star: either there is a cross matching or
some family correlates strongly with a star. Besides having independent interest, this stability result
will play a key role in the proof of our general Turán results.

1.2 Expanded hypergraphs
As mentioned above, there are very few general results on Turán numbers for a family of hypergraphs.
One family for which there has been substantial progress is that of expanded graphs (see the survey
[38]). Given an r-graph G and k ≥ r, the k-expansion G+ = G+(k) is the k-uniform hypergraph
obtained from G by adding k − r new vertices to each edge, i.e. G+ has edge set {e ∪ Se : e ∈ E(G)}
where |Se| = k − r, Se ∩ V (G) = ∅ and Se ∩ Se′ = ∅ for all distinct e, e′ ∈ E(G). In particular, a
k-graph s-matching is the k-expansion of a graph s-matching.

When G is a graph (the case r = 2), in the non-degenerate case when k is less than the chromatic
number χ(G) the Turán numbers ex(n,G+(k)) are well-understood (see [38, Section 2]), so the main
focus for ongoing research is the degenerate case k ≥ χ(G). Here Frankl and Füredi [14] introduced
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the following important parameter and corresponding construction that seems to often determine the
asymptotics of the Turán number. For any r-graph G, we call S ⊂ V (G+) a crosscut if |E ∩ S| = 1
for all E ∈ G+. The crosscut σ(G) of G is the size of the minimal such set, i.e.

σ(G) := min
{
|S| : S ⊂ V (G+) with |E ∩ S| = 1 for all E ∈ G+

}
.

It is easy to see that σ(G) exists for k ≥ r+ 1 and that in this regime the parameter does not depend
on k. Clearly,

S(1)
n,k,σ(G)−1 :=

{
A ∈

(
[n]
k

)
: |A ∩ [σ(G)− 1]| = 1

}
is G+-free. Moreover, this simple construction determines the asymptotics of ex(n,G+(k)) for n >
n0(k,G) for several graphs G, including paths [22, 31], cycles [21, 31] and trees [20, 32]. Given this
phenomenon, according to Mubayi and Verstraëte [38], one of the major open problems on expansions
is to decide when the Turán number is asymptotically determined by the crosscut construction. Our
next result resolves this problem for all bounded degree r-graphs (so in particular for graphs) in a range
of parameters that is optimal up to constant factors. Moreover, we also obtain a strong structural
approximation for any family that is close to extremal (see Theorem 1.8 below).

Theorem 1.4. For any r,∆ ≥ 2 and ε > 0 there is C > 0 so that the following holds for any r-graph
G with s edges, maximum degree ∆(G) ≤ ∆ and σ(G) ≥ 2. For any k, n ∈ N with C ≤ k ≤ n/Cs we
have ex(n,G+(k)) = (1± ε)|S(1)

n,k,σ(G)−1|.

Remark 1.5. Some lower bound on k is necessary to obtain the conclusion in Theorem 1.4. Indeed,
we have already mentioned that the non-degenerate case k < χ(G) when G is a graph exhibits different
behaviour (a complete partite k-graph shows that ex(n,G+) = Ω(n/k)k), and moreover, examples in
[38] show that some lower bound on k may be necessary even if G is bipartite (e.g. if G = K9,9 then
consider the 3-graph of triangles in a suitably dense random graph made G-free by edge deletions).
The upper bound on k in our result is also necessary up to the constant factor by space considerations,
as even the complete k-graph

(
[n]
k

)
can only contain G+(k) if n ≥ |V (G+)| = |V (G)|+ (k − 2)s. With

the exception of Frankl’s matching theorem [13], Theorem 1.4 appears to be the only known Turán
result in which both the uniformity k and the size s can vary over such a wide range.

Next we consider conditions under which we can refine the asymptotic result of Theorem 1.4 and
determine the Turán number ex(n,G+) exactly. One complication here is that crosscuts may be beaten
by stars Sn,k,τ(G)−1, where

τ(G) := min
{
|S| : |S ∩ e| ≥ 1 for all e ∈ E(G)

}
is the transversal number of G. Clearly τ(G) ≤ σ(G). For fixed s, crosscuts cannot be beaten by
smaller stars, but this may not hold when s grows with n, as then edges with more than one vertex
in the base of the star are significant. Another complication is that lower order correction terms
are necessary for certain G, e.g. for k-expanded paths P+

ℓ (k) of length ℓ for n > n0(k, ℓ) we have
ex(n, P+

3 (k)) =
(
n−1
k−1

)
= |Sn,k,1|, as predicted by the crosscut/star construction, but ex(n, P+

4 (k)) =(
n−1
k−1

)
+

(
n−3
k−2

)
, as we can add all sets containing some fixed pair of vertices. This is analogous to the

familiar situation in extremal graph theory where we only expect exact results for graphs that are
critical with respect to the key parameter of the extremal construction. Accordingly, we introduce
the following analogous concept of criticality for expanded hypergraphs with respect to crosscuts and
stars: we say that G is critical if it has an edge e such that

σ(G \ e) = τ(G \ e) < τ(G) = σ(G).

We obtain the following general exact result for Turán numbers.

Theorem 1.6. For any r,∆ ≥ 2 there is C > 0 such that for any critical r-graph G with s edges,
maximum degree ∆(G) ≤ ∆ and C ≤ k ≤ n/Cs we have ex(n,G+(k)) = |Sn,k,σ(G)−1|.
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This result applies to many graphs considered in the previous literature, such as paths of odd
length. Paths of even length are not critical, but satisfy a generalised criticality property: deleting one
edge does not reduce the transversal number, but deleting two edges (whether disjoint or intersecting)
does reduce the crosscut number. Thus we have the following natural construction for excluding any
expanded path P+

ℓ of length ℓ. Let F∗
n,k,ℓ = Sn,k,J with |J | = σ(Pℓ) − 1 if ℓ is odd, or if ℓ is even

obtain F∗
n,k,ℓ from Sn,k,J by adding {A ∈

(
[n]
k

)
: T ⊂ A} for some T ∈

(
[n]\J

2

)
. Clearly F∗

n,k,ℓ is P+
ℓ -free.

Füredi, Jiang and Seiver [22] showed that ex(n, P+
ℓ ) = |F∗

n,k,ℓ| provided n ≫ n0(k, ℓ), and conjectured
that this holds provided n ≥ Ckℓ. We prove this conjecture.

Corollary 1.7. There is C > 0 so that if n, k, ℓ ∈ N and C ≤ k ≤ n/Cℓ then ex(n, P+
ℓ ) = |F∗

n,k,ℓ|.

1.3 Junta Approximation
In recent years, the Analysis of Boolean functions has found significant application in Extremal Com-
binatorics, via the connection provided by the Margulis-Russo formula between the sharp threshold
phenomenon and influences of Boolean functions. This approach was initiated by Dinur and Friedgut
[4], who applied a theorem of Friedgut [19] on Boolean functions of small influence to prove that large
uniform intersecting families can be approximated by juntas, i.e. families that depend only on a few
coordinates. This connection has since played a key role in intersection theorems for a variety of
settings, including graphs [6], permutations [7] and sets [8, 9].

The approach of Dinur and Friedgut was substantially generalised by Keller and Lifshitz [30] to
apply to a variety of Turán problems on expanded hypergraphs. At a very high level, their Junta
Method is a version of the Stability Method in Extremal Combinatorics, in that it consists of two steps:
an approximate step that determines the rough structure of families that are close to optimal, and an
exact step that refines the structure and determines the optimal construction. Their approximate step
consisted of showing that any G+-free family is approximately contained in a G+-free junta.

The crucial new difficulty that we need to address in this paper is allowing the number of edges in
G to grow as a function of n, whereas the previous works needed it to be a fixed constant. Friedgut’s
theorem can no longer be applied in this setting, as we require a threshold result for Boolean functions
f : {0, 1}n → {0, 1} according to the p-biased measure µp in the sparse regime where both p and µp(f)
may be functions of n that approach zero.

Our new sharp threshold result (see Theorem 3.4) provides the necessary improvement on the
analytic side which, when combined with a number of additional combinatorial ideas, allow us to
obtain the following junta approximation theorem. For the statement, we introduce the notation
G(r, s,∆) for the family of all r-graphs G with s edges and maximum degree ∆(G) ≤ ∆. We also recall
that S ⊂ V (G+) is a crosscut if |E ∩ S| = 1 for all E ∈ G+, and that σ(G) denotes the minimum size
of a crosscut.

Theorem 1.8. Let G ∈ G(r, s,∆) and C ≫ r∆ε−1. Then for any G+-free F ⊂
(
[n]
k

)
with C ≤ k ≤

n/Cs, there is J ⊂ V (G) with |J | ≤ σ(G)− 1 and |F \ Sn,k,J | ≤ ε|Sn,k,σ(G)−1|.

We note that Theorem 1.4 is immediate from Theorem 1.8, as for k ≥ C ≫ ε−1 we have

ex(n,G+) ≥ |S(1)
n,k,σ(G)−1| ≥ (1− ε)|Sn,k,σ(G)−1|.

The set J in Theorem 1.8 will consist of all vertices of suitably large degree. Thus F∅
J := F \Sn,k,J

does not have any vertices of large degree, which we will think of a pseudorandomness property.
While Theorem 1.8 suffices for asymptotic results, for our exact results we will require the following

refined junta approximation result proved in Section 5, in which we improve the bound on |F∅
J |.

Theorem 1.9. Let G ∈ G(r, s,∆), 0 < C−1 ≪ δ ≪ ε ≪ (r∆)−1 and C ≤ k ≤ n/Cs. Then for any
G+-free F ⊂

(
[n]
k

)
with |F| > |Sn,k,σ(G)−1| − δ

(
n−1
k−1

)
there is J ∈

(
[n]

σ(G)−1

)
with |F \ Sn,k,J | ≤ ε

(
n−1
k−1

)
.
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1.4 Structure, strategy and techniques
To introduce our new techniques, we will first provide some context by indicating the overall structure
and where new ingredients are needed. In the proof of Theorem 1.8 we will consider separately the
two steps of showing |J | ≤ σ(G) − 1 and |F \ Sn,k,J | ≤ ε|Sn,k,σ(G)−1|. For both steps we consider a
two step embedding strategy for G+, where in the first step we embed1 G in the ‘fat shadow’ of F
(meaning that the image of every edge has many extensions to an edge of F) and in the second step
we ‘lift’ edges from the fat shadow to the original family.

This proof strategy is implemented in the next section, assuming results that will be proved in later
sections. The analysis of fat shadows and the embedding steps will be carried out in Section 4. The
lifting step requires results on cross matchings presented in Section 3, which will also be used for the
proof of the Huang–Loh–Sudakov Conjecture in Section 6.

These cross matching results in Section 3 and their further refinements in Section 5 are where we
need the new techniques, arising from the interplay of two combinatorial pseudorandomness notions
with sharp threshold results from global hypercontractivity. After developing these techniques, the
final three sections of the paper apply them in conjunction with some additional combinatorial ideas
to prove our exact results on the Turán numbers of expanded hypergraphs.

Pseudorandomness

An important theme throughout this paper will be the interplay between two pseudorandomness no-
tions: globalness and uncapturability. Informally, a hypergraph is ‘uncapturable’ if there is no small set
that hits most of its edges and ‘global’ if one cannot obtain a significant density increment by restricting
to those edges that contain some small fixed set. We will see that globalness implies uncapturability,
and that uncapturability can be ‘upgraded’ to globalness by taking appropriate restrictions.

Here we highlight an important new phenomenon for cross matchings with the following result (a
simplified form of Lemma 5.7). Whereas an extremal existence result requires minimum density of
order sk/n, we see that a pseudorandom existence result only requires a density parameter of order
(sk/n)d for any fixed constant d (see the next section for the precise definition of uncapturability).

Lemma 1.10. Let Fi ⊂
(
[n]
k

)
for i ∈ [s], where 2d ≤ k ≤ n/Cs with C ≫ d ≥ 1. If each Fi is

(2ds, (2sk/n)d)-uncapturable then F1, . . . ,Fs cross contain a matching.

Sharp thresholds

A classical theorem of Bollobás and Thomason [2] shows that any monotone property (i.e. hypergraph)
Fn ⊂ {0, 1}n has a threshold. Writing pFn(t) = inf{p : µp(D) ≥ t}, this means that for any ε > 0
there is C > 0 such that pFn

(1− ε) ≤ CpFn
(ε). Many natural properties exhibit the ‘sharp threshold

phenomenon’ that C = 1+o(1) as n → ∞. In particular, our results on Global Hypercontractivity give
such a result for global properties (see Theorem 3.4). Any hypergraph F has a global restriction F ′

obtained by taking those edges containing some small fixed set, so our sharp threshold result enables
us to find µp′(F ′) ≫ µp(F) for some p′ close to p.

We can now give a rough indication (omitting many details) of how this sharp threshold result can
be used to prove a result in the direction of Lemma 1.10 (weakening (sk/n)d to sk/Cn as in Lemma
3.1). Given uncapturable families F1, . . . ,Fs, we can upgrade to global families F ′

1, . . . ,F ′
s, where we

find a small set R partitioned into (R1, . . . , Rs) and each F ′
i = {A \ Ri : A ∈ Fi, A ∩ R = Ri}. Via

the sharp threshold result we can then find further restrictions to pass to families F ′′
1 , . . . ,F ′′

s with
µ2p(F ′′

i ) ≫ µp(Fi), where p = k/n. This increase in density is sufficient to find a cross matching by
a weak form of the extremal result (translated to the product measure setting), which can then be
extended to a cross matching in the original families.

1For simplicity we are only describing the embedding strategy used to bound |F \ Sn,k,J |; the strategy for bounding
|J | is similar, but adapted so that J can play the role of a crosscut in G.
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2 Globalness and uncapturability
This section introduces the two key pseudorandomness concepts that will be fundamental throughout
this paper. After some basic definitions in the first subsection, we will define and analyse these
pseudorandomness notions in the second subsection. We conclude in the third section by proving our
junta approximation theorem, assuming two embedding lemmas that will be proved in Section 4.

2.1 Definitions
Given m,n ∈ N with m ≤ n we let [n] = {1, 2, . . . , n} and [m,n] = {m,m+1, . . . , n}. We write {0, 1}X
for the power set (set of subsets) of a set X (identifying sets with their characteristic 0/1 vectors) and(
X
k

)
= X(k) =

{
A ⊂ X : |A| = k

}
. We call F ⊂ {0, 1}X a family or a hypergraph on the vertex set X,

and the elements of F are called edges. We say F is k-uniform if F ⊂
(
X
k

)
; we also call F a k-graph

on X.
Given a family F ⊂ {0, 1}X and B ⊂ J ⊂ X we write FB

J for the family

FB
J :=

{
A ∈ {0, 1}X\J : A ∪B ∈ F

}
⊂ {0, 1}X\J .

Clearly FB
J is (k − |B|)-uniform if F is k-uniform. If either B or J has a single element {j} then we

will often suppress the bracket, e.g. Fv
v = F{v}

{v} .
We refer to Fv

v as the exclusive link of v in F . The inclusive link of v in F is F ∗ v := {E ∈ F :
v ∈ E}. The degree of a vertex v in F is dF (v) = |Fv

v | = |F ∗ v|. The minimum and maximum degrees
of F are δ(F) = minv∈V (F) dF (v) and ∆(F) = maxv∈V (F) dF (v).

Let H1, . . . ,Hs ⊂ {0, 1}V . We say that F1, . . . ,Fs ⊂ {0, 1}X cross contain H1, . . . ,Hs if there is
an injection ϕ : V → X such that ϕ(Hi) ⊂ Fi for all i ∈ [s]. Here we write ϕ(Hi) = {ϕ(e) : e ∈ Hi}
with each ϕ(e) = {ϕ(x) : x ∈ e}.

We simply say that F1, . . . ,Fs cross contain H if e(H) = s and F1, . . . ,Fs cross contain an ordering
of the edges of H, i.e. if H = {ei : i ∈ [s]} then there is a permutation σ ∈ Ss such that the hypergraphs
F1, . . . ,Fs cross contain {eσ(1)}, . . . , {eσ(s)}. Thus a single hypergraph F contains H if F1, . . . ,Fs cross
contain H, where Fi = F for all i ∈ [s].

Given an r-graph G and k ≥ r, we recall that the k-expansion G+ = G+(k) is the k-uniform
hypergraph obtained from G by adding k − r new vertices to each edge, i.e. G+ has edge set {e ∪ Se :
e ∈ E(G)} where |Se| = k − r, Se ∩ V (G) = ∅ and Se ∩ Se′ = ∅ for all distinct e, e′ ∈ E(G).

When embedding expanded hypergraphs in uniform families, we may allow the uniformity of our
families to vary, defining cross containment of G+ in the obvious way: the edge of G+ embedded in
the family Fi ⊂

(
[n]
ki

)
is obtained from an edge of G by adding ki − r new vertices.

A family F ⊂ {0, 1}X is said to be monotone if given F ∈ F and F ⊂ F ′ ⊂ X we also have F ′ ∈ F .
Given F ⊂ {0, 1}X the up closure of F is the monotone family F↑ = {B ⊂ X : A ⊂ B for some A ∈
F} ⊂ {0, 1}X . The ℓ-shadow of F is ∂ℓ(F) := {F ∈

(
X
ℓ

)
: F ⊂ G for some G ∈ F}. We usually simply

write ∂(F) for ∂1(F).
Given F ⊂

(
X
k

)
we will write µ(F) = |F|/

(|X|
k

)
. Some of our results are more naturally stated

with |F| and others with µ(F), so we will freely move between these settings. Given p ∈ [0, 1] we
will use µp to denote the p-biased measure on {0, 1}n, where a set A ∼ µp is selected by including
each i ∈ [n] independently with probability p. We extend this notation to families F ⊂ {0, 1}n by
µp (F) := PrA∼µp [A ∈ F ]. We often identify a family F with its characteristic Boolean function
f : {0, 1}n → {0, 1} and apply the above terminology freely in either setting, e.g. we call f monotone
if F is monotone and write µp(f) for the expectation of f under µp.

To pass between these measures we note the following simple properties that will be henceforth
used without further comment. For any F ⊂ {0, 1}n and J ⊂ [n], we have the union bound estimate

µp(F) ≤ µp(F∅
J) + p

∑
j∈J

µp(F j
j ) ≤ µp(F∅

J) + |J |p,
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and in the opposite direction
µp(F) ≥ (1− p)|J|µp(F∅

J).

Similar estimates hold replacing µp by uniform measures µ for F ⊂
(
[n]
k

)
with k = pn, remembering

to use the correct normalisations: we have µ(F) = |F|
(
n
k

)−1 and µ(F j
j ) = |F j

j |
(
n−1
k−1

)−1
. This gives

µ(F) ≤ µ(F∅
J) +

(
k
n

)∑
j∈J

µ(F j
j ) ≤ µ(F∅

J) +
|J|k
n , and

µ(F) ≥
(
n
k

)−1(n−|J|
k

)
µ(F∅

J ) ≥
(
1− |J|

n−k

)k
µ(F∅

J).

Throughout a ≪ b or a−1 ≫ b−1 will mean that the following statement holds provided a is
sufficiently small as a function of b.

Recall that G(r, s,∆) denotes the family of all r-graphs G with s edges and maximum degree
∆(G) ≤ ∆. Throughout the remainder of the paper it will often be convenient to assume that G
belongs to the subset G′(r, s,∆) of G(r, s,∆) consisting of its r-partite r-graphs. There is no loss of
generality in this assumption, as G+(r∆) is r∆-partite for any G ∈ G(r, s,∆). To see this, consider a
greedy algorithm in which we assign vertices of G sequentially to r∆ parts, ensuring for every edge that
all of its vertices are in distinct parts. Clearly this algorithm can be completed. Then the expansion
vertices can be assigned so that each edge of G+ has one vertex in each part.

2.2 Pseudorandomness
Here we define our two key notions of pseudorandomness for set systems, namely uncapturability and
globalness, and explore some of their basic properties.

Definition 2.1. Let F ⊂ {0, 1}n and µ be a measure on {0, 1}n.
We say F is (µ, a, ε)-uncapturable if µ(F∅

J ) ≥ ε whenever J ⊂ [n] with |J | ≤ a.
We say F is (µ, a, ε)-global if µ(FJ

J ) ≤ ε whenever J ⊂ [n] with |J | ≤ a.
We say F is (µ, a, ε)-capturable if it is not (µ, a, ε)-uncapturable, or (µ, a, ε)-local if it is not (µ, a, ε)-

global. We omit µ from the notation if it is clear from the context, i.e. if F ⊂
(
[n]
k

)
with uniform measure

or F ⊂ {0, 1}n with p-biased measure µp, where p is clear from the context.

We now establish some basic properties of these definitions. For each property we state two lemmas
that apply when µ is uniform or µ = µp. We only give proofs in the uniform setting, as those in the p-
biased setting are essentially the same. The following pair of lemmas shows that globalness is preserved
by restrictions.

Lemma 2.2. If F ⊂
(
[n]
k

)
is (a, ε)-global and I ⊂ J ⊂ [n] with |I| < a and |J | < n/2k then FI

J is
(a− |I|, 2ε)-global.

Lemma 2.3. If F ⊂ {0, 1}n under µp is (a, ε)-global and I ⊂ J ⊂ [n] with |I| < a and |J | < 1/2p
then FI

J is (a− |I|, 2ε)-global.

Proof of Lemma 2.2. Let K ⊂ [n] \ J with |K| ≤ a− |I|. Then we have µ((FI
J)

K
K) = µ((FI∪K

I∪K )∅J\I) ≤(
1− |J\I|

n−k

)−k
µ(FI∪K

I∪K ) ≤ 2µ(FI∪K
I∪K ) < 2ε, using that |I ∪K| ≤ a and that F is (a, ε)-global.

The next pair shows that globalness implies uncapturability.

Lemma 2.4. If F ⊂
(
[n]
k

)
is (1, ε)-global with ε = µ(F)n/2ak then F is (a, µ(F)/2)-uncapturable.

Lemma 2.5. If F ⊂ {0, 1}n under µp is (1, ε)-global with ε = µp(F)/2ap then F is (a, µp(F)/2)-
uncapturable.

Proof of Lemma 2.4. If |J | ≤ a then µ(F∅
J ) ≥ µ(F)−

(
k
n

)∑
j∈J µ(F j

j ) ≥ µ(F)−
(
k
n

)
|J |ε ≥ µ(F)/2.
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Uncapturability does not imply globalness, but we do have a partial converse: by taking restrictions
we can upgrade uncapturable families to families that are global or large.

Lemma 2.6. Suppose β ∈ (0, .1) and Fi ⊂
(
[n]
ki

)
with 2r < ki < βn/2rm are (rm, δi)-uncapturable for

i ∈ [m]. Then there are pairwise disjoint S1, . . . , Sm with each |Si| ≤ r such that, setting Gi = (Fi)
Si

S

where S =
⋃

i Si, whenever µ(Gi) < β we have Si = ∅ and Gi is (r, 2β)-global with µ(Gi) > δi.

Lemma 2.7. Suppose β ∈ (0, .1) and Fi ⊂
(
[n]
ki

)
with ki < βn/2rm are (rm, δi)-uncapturable for

i ∈ [m]. Then there are pairwise disjoint S1, . . . , Sm with each |Si| ≤ r such that, setting Gi = (F↑
i )

Si

S

where S =
⋃

i Si and pi = ki/(n − |S|), whenever µpi
(Gi) < β we have Si = ∅ and Gi is (r, 2β)-global

with µpi(Gi) > δi/4.

Proof of Lemma 2.6. Let I ⊂ [m] be maximal such that there exists a collection of pairwise disjoint
sets (Si : i ∈ I) with |Si| ≤ r and µ((Fi)

Si

Si
) > 1.5β. Let S =

⋃
i∈I Si and Gi = (Fi)

Si

S for each i ∈ [m],
where Si = ∅ for i ∈ [m] \ I. For any i ∈ I we have µ(Gi) > µ((Fi)

Si

Si
) − |S \ Si|ki/n > β. Now

consider i with µ(Gi) < β. Then i /∈ I, so Si = ∅ and µ(Gi) > δi by uncapturability. Furthermore,
for any R ⊂ [n] \ S with |R| ≤ r we have µ((Fi)

R
R) ≤ 1.5β, so (Gi)

R
R = ((Fi)

R
R)

∅
S has µ((Gi)

R
R) ≤(

1− |S|
n−ki

)−ki
µ((Fi)

R
R) < 2β.

We conclude this subsection with a lemma on decomposing any family according to its vertex
degrees, where to make an analogy with the regularity method we think of high degree vertex links as
‘structured’ and the low degree remainder as ‘pseudorandom’.

Lemma 2.8. Let F ⊂
(
[n]
k

)
and J = {i : µ(F i

i ) > ε}. If |J | < n/2k then G = F∅
J is (1, 2ε)-global, and

so (a, µ(G)/2)-uncapturable with a = µ(G)n/4kε.

Proof. If j ∈ [n]\J then µ(F j
j ) ≤ ε by definition of J , so µ(Gj

j ) = µ((F j
j )

∅
J) ≤

(
1− |J|

n−k

)−k
µ(F j

j ) < 2ε.
The lemma follows by Definition 2.1 and Lemma 2.4.

2.3 Embeddings
Here we will prove Theorem 1.8 assuming two fundamental embedding results, which will be proved in
Section 4. The first of these shows that sufficiently large families contain a cross copy of any expanded
hypergraph G+. Our bound on µ(Fi) is sharper for larger ki: when ki = O(1) it is a constant, which
is relatively weak (but still useful), whereas when ki ≫ log n it is O(ski/n) = O(σ(G)ki/n), which is
tight up to the constant factor.

Lemma 2.9. Let G ∈ G(r, s,∆), C ≫ r∆ and C ≤ ki ≤ n/Cs for all i ∈ [s]. Then any Fi ⊂
(
[n]
ki

)
with µ(Fi) ≥ e−ki/C + Cski/n for all i ∈ [s] cross contain G+.

When the uniformities ki are small we cannot improve this cross containment result, as below
density e−Ω(ki) the families Fi may have disjoint supports. However, when finding G+ in a single
family F we can get a much better bound on the density, and moreover it suffices to assume that F is
sufficiently uncapturable, as follows.

Lemma 2.10. Given G ∈ G(r, s,∆), C ≫ C1 ≫ C2 ≫ r∆ and C ≤ k ≤ n/Cs, any (C1s, sk/C2n)-
uncapturable F ⊂

(
[n]
k

)
contains G+.

We conclude this section by deducing our junta approximation theorem from the above lemmas.

Proof of Theorem 1.8. Let G ∈ G(r, s,∆) and C ≫ C1 ≫ C2 ≫ r∆ε−1. Consider any G+-free
F ⊂

(
[n]
k

)
with C ≤ k ≤ n

Cs . Let J = {i ∈ [n] : µ(F i
i ) ≥ β}, where β := e−k/C1 + C1sk/n. We need to

show |J | ≤ σ(G)− 1 and |F∅
J | ≤ ε|Sn,k,σ(G)−1|.

The bound on |J | follows from Lemma 2.9. Indeed, supposing for a contradiction |J | ≥ σ(G), we
may fix a minimal crosscut S of G+ and distinct is ∈ J for each s ∈ S. Let I = {is : s ∈ S} and
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Fs := F is
I for s ∈ S. By definition of J , for each s ∈ S we have µ(Fs) > β − |I|k/n > β/2, so by

Lemma 2.9 the families (Fs : s ∈ S) cross contain the exclusive links ((G+)ss : s ∈ S). However, this
contradicts F being G+-free.

As |J | < s ≤ n/Ck we can apply Lemma 2.8 to see that G = F∅
J is (a, µ(G)/2)-uncapturable with

a = µ(G)n/4kβ. However, by Lemma 2.10 G is (C1s, sk/C2n)-capturable, so we must have µ(G)/2 <
sk/C2n, or a < C1s, so again µ(G) < 4βC1sk/n < sk/C2n. As µ(Sn,k,σ(G)−1) > .9(σ(G)− 1)k/n and
s ≤ ∆σ(G) we deduce |F∅

J | = |G| < ε|Sn,k,σ(G)−1|.

3 Matchings
The main result of this section is the following lemma on cross containment of matchings in uncap-
turable families, which will be used for ‘lifting’ (as described in Section 1.4) and also in the proof of
the Huang–Loh–Sudakov Conjecture.

Lemma 3.1. Let C ≫ C1 ≫ C2 ≫ 1 and Fi ⊂
(
[n]
ki

)
with ki ≤ n/Cs for i ∈ [s]. Suppose Fi is

(C1m,mki/C2n)-uncapturable for i ∈ [m] and µ(Fi) > C1ski/n for i > m. Then F1, . . . ,Fs cross
contain a matching.

We start in the first subsection by recalling some basic probabilistic tools, and also our new sharp
threshold result from [29]. Next we present some extremal results on cross matchings in the second
subsection. We conclude by proving the uncapturability result in the third subsection.

3.1 Probabilistic tools and sharp thresholds
We start with the following lemma that will be used to pass between the uniform and p-biased measures.

Lemma 3.2. Let n, k ∈ N with k = pn ≤ n. Then P
(
Bin(n, p) ≥ k

)
≥ 1/4. Thus if A ⊂

(
[n]
k

)
we

have µp(A↑) ≥ µ(A)/4.

Proof. The first statement appears in [23]. With α := µ(A), the second holds as
∣∣A↑ ∩

(
[n]
j

)∣∣ ≥ α
(
n
j

)
for j ≥ k by the LYM inequality, and so we have µp(A↑) ≥

∑n
j=k P

(
Bin(n, p) = j

)
µ
(
A↑ ∩

(
[n]
j

))
≥

P
(
Bin(n, p) ≥ k

)
α ≥ α/4.

We will also need the following well-known Chernoff bound (see [25, Theorem 2.8]), as applied
to sums of Bernoulli random variables, i.e. random variables which take values in {0, 1}; if these are
identically distributed then we obtain a binomial variable. The inequality can also be applied to a
hypergeometric random variable (see [25, Remark 2.11]), i.e. |S ∩ T | with S ∈

(
X
s

)
and uniformly

random T ∈
(
X
t

)
for some X, s and t.

Lemma 3.3. Let X be a sum of independent Bernoulli random variables and 0 < a < 3/2. Then
P
[
|X − EX| ≥ aEX

]
≤ 2e−

a2

3 EX .

Next we state our sharp threshold result for global functions which will play a crucial role in this
section, and so for all subsequent applications of Lemma 3.1.

Theorem 3.4. [29, Theorem 1.9] For any ζ > 0 there is C0 > 0 such that for any ε, p, q ∈ (0, 1/2)
with q ≥ (1 + ζ)p and C > C0, writing r = C log ε−1 and δ = C−r, any monotone (µp, r, δ)-global
F ⊂ {0, 1}n with µp(F) ≤ δ satisfies µq(F) ≥ µp(F)/ε.

We will apply the following two consequences of this result.

Theorem 3.5. Suppose F ⊂ {0, 1}n is monotone with µp(F) = µ.

1. If µ ≪ r−1 ≪ ε then there is R ⊂ [n] with |R| ≤ r and µ2p(FR
R ) ≥ µ/ε.
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2. If p ≪ K−1 ≪ η ≪ 1 then there is R ⊂ [n] with |R| ≤ K logµ−1 and µKp(FR
R ) ≥ µη.

Proof. For (1) we apply Theorem 3.4 with ζ = 1 and the same ε. If F is not (r, δ)-global then for
some R with |R| ≥ r we have µ2p(FR

R ) ≥ µp(FR
R ) ≥ δ ≥ µ/ε. On the other hand, if F is (r, δ)-global

then we can take R = ∅, as Theorem 3.4 gives µ2p(F) ≥ µ/ε.
For (2), we repeatedly apply Theorem 3.4 with ζ = 1 and ε = µη2

, so r = C log ε−1 = Cη2 logµ−1

and δ = C−r = µη2C logC ≥ µη, as we may assume η ≪ C−1. We can assume that F is (r, δ)-global,
otherwise we immediately obtain R as required, so µ2p(F) ≥ µ/ε = µ1−η2

. Repeating the argument, if
we do not find R then after t ≤ η−2 iterations we reach µ2tp(F) ≥ δ ≥ µη, so we can take R = ∅.

3.2 Extremal results
In this subsection we adapt the method of [24, Lemma 3.1] to prove a variant form of the following
result of Huang, Loh and Sudakov [24].

Lemma 3.6. Let k1, . . . , ks, n ∈ N with
∑

i∈[s] ki ≤ n. Suppose Fi ⊂
(
[n]
ki

)
for all i ∈ [s] and that

F1, . . . ,Fs do not cross contain a matching. Then µ(Fi) ≤ ki(s− 1)/n for some i ∈ [s].

We will prove the following variant that allows a few families to be significantly smaller.

Lemma 3.7. Let 1 ≤ m ≤ s, k1, . . . , ks ≥ 0 and n ≥
∑

i∈[s] ki. Suppose Fi ⊂
(
[n]
ki

)
with µ(Fi) >

2kim/n for i ∈ [m] and µ(Fi) > 2kis/n for i ∈ [m+ 1, s]. Then {Fi}i∈[s] cross contain a matching.

We also require the following version for the p-biased measure, which we will deduce from Lemma
3.7 by a limit argument similar to those in [5, 18].

Lemma 3.8. Let m ≤ s and p1, . . . , ps > 0 with
∑

i∈[s] pi ≤ 1/2. Suppose that F1, . . .Fs ⊂ {0, 1}n

are monotone families with µpi

(
Fi

)
≥ 3mpi for i ∈ [m] and µpi

(
Fi

)
≥ 3spi for i ∈ [m + 1, s]. Then

{Fi}i∈[s] cross contain a matching.

We introduce the following terminology. Given a = (a1, . . . , as) ∈ Rs and n, k1, . . . , ks ≥ 0 we say
a is forcing for (n, k1, . . . , ks) if any families F1, . . . ,Fs with Fi ⊂

(
[n]
ki

)
and µ(Fi) >

aiki

n for all i ∈ [s]
cross contain an s-matching. We say a = (a1, . . . , as) ∈ Rs is forcing if it is forcing for (n, k1, . . . , ks)
whenever n ≥

∑
i∈[s] ki and exactly forcing if it is forcing for (n, k1, . . . , ks) whenever n =

∑
i∈[s] ki.

Any forcing sequence is clearly exactly forcing; we establish the converse.

Lemma 3.9. A sequence a ∈ Rs is forcing if and only if it is exactly forcing.

We require the following compression operators. Given distinct i, j ∈ [n] and F ⊂ [n], we let

Ci,j(F ) :=

{
(F \ {j}) ∪ {i} if j ∈ F, i /∈ F ;

F otherwise.

Given F ⊂ {0, 1}n, we let Ci,j(F) = {Ci,j(F ) : F ∈ F} ∪ {F ∈ F : Ci,j(F ) ∈ F}. We say F is
Ci,j-compressed if Ci,j(F) = F .

Proof of Lemma 3.9. A forcing sequence is clearly exactly forcing, so it remains to prove the converse.
We argue by induction on s; the base case s = 1 is clear. Suppose that a ∈ Rs is exactly forcing. We
fix k1, . . . , ks ≥ 0 and show by induction on n ≥

∑
i∈[s] ki that a is forcing for (n, k1, . . . , ks), i.e. any

families F1, . . . ,Fs with Fi ⊂
(
[n]
ki

)
and µ(Fi) >

aiki

n for all i ∈ [s] cross contain an s-matching. The
base case n =

∑
i∈[s] ki holds as a is exactly forcing.

First suppose ki = 0 for some i ∈ [s]; without loss of generality i = s. Then a′ = (a1, . . . , as−1) is
exactly forcing, and so forcing by induction on s. Thus F1, . . . ,Fs−1 cross contain an (s−1)-matching.
Combined with ∅ ∈ Fs we find a cross s-matching in F1, . . . ,Fs, as required.
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We may now assume ki ≥ 1 for all i ∈ [s]. We suppose for contradiction that F1, . . . ,Fs do not
cross contain an s-matching. Let G1, . . . ,Gs be obtained from F1, . . . ,Fs by successively applying
the compression operators C1,n, C2,n, . . . , Cn−1,n. As is well-known (e.g. see [24, Lemma 2.1 (iii)]),
G1, . . . ,Gs do not cross contain an s-matching and are Cj,n-compressed for all j ∈ [n − 1]. For each
i ∈ [s] let

Gi(n) :=
{
A ⊂ [n− 1] : A ∪ {n} ∈ Gi

}
⊂

(
[n−1]
ki−1

)
;

Gi(n) :=
{
A ⊂ [n− 1] : A ∈ Gi

}
⊂

(
[n−1]
ki

)
.

We now claim that if I ⊂ [s] then {Hi}i∈[s] are cross free of an s-matching, where Hi = Gi(n) for
i ∈ I and Hi = Gi(n) for i /∈ I. For contradiction, suppose {Ai}i∈[s] is such a cross matching in
{Hi}i∈[s]. Then Ai ∪ {n} ∈ Gi for all i ∈ I and Ai ∈ Gi for i /∈ I. However, as Gi is Cj,n-compressed
for all j ∈ [n − 1] and n >

∑
i∈[s] ki, there are distinct ji ∈ [n] \

(
∪i∈[s] Ai

)
for all i ∈ I such that

Ai ∪ {ji} ∈ Gi. Then {Ai ∪ {ji}}i∈I ∪ {Ai}i∈[s]\I is a cross s-matching in {Gi}i∈[s], a contradiction.
Thus the claim holds.

By induction on n, it now suffices to show that for each i ∈ [s] either µ(Gi(n)) > ai(ki − 1)/(n− 1)
or µ(Gi(n)) > aiki/(n− 1); indeed, we then obtain the required contradiction by setting I = {i ∈ [s] :
µ(Gi(n)) > ai(ki − 1)/(n− 1)} in the above claim. But this is clear, as otherwise

aiki
n

< µ(Gi) =
(n− ki

n

)
µ(Gi(n)) +

(ki
n

)
µ(Gi(n)) ≤

(n− ki
n

)( aiki
n− 1

)
+
(ki
n

)(ai(ki − 1)

n− 1

)
=

aiki
n

,

a contradiction. This completes the proof.

We conclude this subsection by deducing Lemmas 3.7 and 3.8.

Proof of Lemma 3.7. By Lemma 3.9 it suffices to prove the statement under the assumption n =∑
i∈[s] ki. Note first that if n = 0 then Fi = {∅} for all i ∈ [s] which clearly cross contain an s-

matching. Thus we may assume n > 0. For any i ∈ [m] we have 2kim/n < µ(Fi) ≤ 1, so ki < n/2m,
and similarly ki < n/2s for i ∈ [m+1, s]. But now n =

∑
i∈[s] ki < m · n/2m+ (s−m) · n/2s < n is a

contradiction.

Proof of Lemma 3.8. Let N−1 ≪ ε ≪ mini∈[s] pi and Gi = Fi × {0, 1}[N ]\[n] ⊂ {0, 1}N for each
i ∈ [s]. Then each µpi

(Gi) = µpi
(Fi). Writing Ii =

[
(1 − ε)Npi, (1 + ε)Npi

]
, by Lemma 3.3 each

µpi

(
∪k/∈Ii

(
[N ]
k

))
< ε, so there are ki ∈ Ii such that each µ

(
Gi ∩

(
[N ]
ki

))
> µpi

(Fi)− ε, which is at least
2mki/N for i ∈ [m] and 2ski/N for i ∈ [m+ 1, s]. The result now follows from Lemma 3.7.

3.3 Capturability
In this subsection we conclude this section by proving its main lemma on cross matchings in uncap-
turable families. The idea of the proof is to take suitable restrictions that boost the measure of the
families so that we can apply the extremal result from the previous subsection. However, uncapturabil-
ity is not preserved by restrictions, so we first upgrade to globalness, which is preserved by restrictions.
We also pass from the setting of uniform families to that of biased measures, which allows us to apply
our sharp threshold result, and also has the technical advantage that we do not need to assume any
lower bound on the uniformity of our families.

Proof of Lemma 3.1. Let C ≫ C1 ≫ C2 ≫ 1 and Fi ⊂
(
[n]
ki

)
with ki ≤ n/Cs for i ∈ [s]. Suppose Fi

is (C1m,mki/C2n)-uncapturable for i ∈ [m] and µ(Fi) > C1ski/n for i > m. We need to show that
F1, . . . ,Fs cross contain a matching.

We start by upgrading uncapturability to globalness and moving to biased measures. By Lemma
2.7 with r = C1 and β = C−2

1 there are pairwise disjoint S1, . . . , Sm with each |Si| ≤ r such that,
setting Gi = (F↑

i )
Si

S where S =
⋃

i Si and pi = ki/(n − |S|), whenever µpi
(Gi) < C−2

1 we have Si = ∅
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and Gi is (C1, 2C
−2
1 )-global with µpi

(Gi) > mki/4C2n > mpi/5C2. We note by Lemma 2.5 that Gi is
(a,mpi/10C2)-uncapturable, where a = (mpi/5C2)/(4piC

−2
1 ) > C1m.

Next we will choose pairwise disjoint R1, . . . , Rm ⊂ [n] \ S with each |Ri| < C1/8, write R<j =⋃
i<j Ri, and define families Gj

i by Gj
i = (Gi)

∅
R<j

for i ≥ j or Gj
i = (Gi)

Ri

R<j
for i < j.

We claim that we can choose each Ri to ensure µ2pi
(Gi

i) ≥ 7mpi. To see this, first note that
Gi−1
i = (Gi)

∅
R<i

has µpi
(Gi−1

i ) ≥ mpi/10C2 by uncapturability. If µpi
(Gi−1

i ) ≥ 7mpi we let Ri = ∅ to
obtain µ2pi

(Gi
i) = µ2pi

(Gi−1
i ) ≥ µpi(Gi−1

i ) ≥ 7mpi. Otherwise, as mpi < 2C−1 ≪ C−1
1 ≪ C−1

2 we can
apply Theorem 3.5.1 with ε−1 = 70C2 and r = C1/8 to choose Ri with |Ri| ≤ r so that Gi

i = (Gi−1
i )Ri

Ri

has µ2pi
(Gi

i) > µpi
(Gi−1

i )/ε ≥ 7mpi. Either way the claim holds.
By Lemma 2.3 each Gi

i with i ∈ [m] is (C1/2, 4C
−2
1 )-global, so Gm

i = (Gi
i)

∅⋃
j>i Rj

has µ2pi(Gm
i ) ≥

µ2pi
(Gi

i) − m(C1/8) · 4C−2
1 · 2pi ≥ 3m(2pi). For i > m we have µ(Fi) > C1ski/n, so µpi

(Gi
i) >

µpi
(Fi)/4 − m(C1/8)pi > 3spi. By Lemma 3.8, Gm

1 , . . . ,Gm
s cross contain a matching; hence so do

F1, . . . ,Fs.

4 Shadows and embeddings
In this section we will complete the proof of our junta approximation theorem by implementing the
strategy described above of finding embeddings in fat shadows. We start in the first subsection by
defining and analysing fat shadows. In the second subsection we find shadow embeddings. We then
conclude in the final subsection with lifted embeddings (using the lifting result from the previous
section) that prove Lemmas 2.9 and 2.10, thus proving Theorem 1.8.

4.1 Fat shadows
In this subsection we present various lower bounds on the density of fat shadows, defined as follows.

Definition 4.1. The c-fat r-shadow of F ⊂
(
[n]
k

)
is ∂r

cF := {A ∈
(
[n]
r

)
: µ(FA

A ) ≥ c}.
The c-fat shadow of F is ∂cF :=

⋃
r≤k ∂

r
cF .

The following simple ‘Markov’ bound is useful when F is nearly complete.

Lemma 4.2. If µ(F) ≥ 1− cc′ then µ(∂r
1−cF) ≥ 1− c′.

Proof. Consider uniformly random A ⊂ B ⊂ [n] with |A| = r and |B| = k. For any A /∈ ∂r
1−cF we

have P(B /∈ F | A) ≥ c, so cc′ ≥ P(B /∈ F) ≥ c · P(A /∈ ∂r
1−cF) = c(1− µ(∂r

1−cF)).

Another bound is given the following Fairness Proposition of Keller and Lifshitz [30].

Proposition 4.3 (Fairness Proposition). Let C ≫ r/ε and F ⊂
(
[n]
k

)
with k ≥ r and µ (F) ≥ e−k/C .

For c = (1− ε)µ(F) we have µ(∂r
cF) ≥ 1− ε.

When the above bounds are not applicable we rely on the following lemma, whose proof will occupy
the remainder of this subsection.

Lemma 4.4. Let F ⊂
(
[n]
k

)
, r < ℓ ≤ k and H = {B ∈

(
[n]
ℓ

)
: ∂rB ⊂ ∂r

cF}, where c = µ(F)/2
(
ℓ
r

)
.

Then µ(H) ≥ µ(F)/2. Thus µ(∂r
cF) ≥ (µ(F)/2)r/ℓ. Furthermore, if G ∈ G′(r, s,∆), C ≫ r∆ and

∂r
cF is G-free then µ(∂r

cF) ≥
(
(µ(F)/2− (s/n)ℓ/C)n/sℓ2

)r/(ℓ−1).

We require several further lemmas for the proof of Lemma 4.4. We start by stating a consequence
of the Lovász form [34] of the Kruskal–Katona theorem [26, 33].

Lemma 4.5. If 1 ≤ ℓ ≤ k ≤ n and A ⊂
(
[n]
k

)
then µ(∂ℓ(A)) ≥ µ(A)ℓ/k.
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Proof. Define β ∈ [0, 1] by |A| =
(
βn
k

)
, so that µ(A) =

∏k−1
i=0 (β− i/n). By the Lovász form of Kruskal–

Katona (Problem 13.31(b) in [34]), we have |∂ℓA| ≥
(
βn
ℓ

)
, so µ(∂ℓ(A))k ≥

∏ℓ−1
i=0(β−i/n)k ≥ µ(A)ℓ.

Next we require an estimate on the Turán numbers of r-partite r-graphs, which follows from [3,
Theorem 2] due to Conlon, Fox and Sudakov. (Recall that G′(r, s,∆) is the family of r-partite r-graphs
with s edges and maximum degree ∆.)

Theorem 4.6. Let F ∈ G′(r, s,∆) and C ≫ r∆. Then any F -free H ⊂
(
[n]
r

)
with n > Cs has

µ(H) < (s/n)1/C .

We note that the following lemma is immediate from Theorem 4.6 and Lemma 4.5.

Lemma 4.7. Let G ∈ G′(r, s,∆), C ≫ r∆, C ≤ k ≤ n/Cs and F ⊂
(
[n]
k

)
. If ∂rF is G-free then

µ(F) ≤ (s/n)k/C .

Our next lemma is an adaptation of one due to Kostochka, Mubayi and Verstraëte [31].

Lemma 4.8. Suppose G ∈ G′(r, s,∆), C ≫ r∆ and F is a G+-free k-graph on [n]. Then µ(∂F) ≥
(µ(F)− (s/n)k/C)n/sk2.

Proof. We define G ⊂ F by starting with G = F and then repeating the following procedure: if there
is any A ∈ ∂G with |GA

A | ≤ ks then remove from G all edges containing A. This terminates with some
G such that |GA

A | > ks for all A ∈ ∂G and |G| ≥ |F| − ks|∂F|, so µ(∂F) ≥ (µ(F)− µ(G))n/sk2.
We will now show that ∂rG is G-free, which will complete the proof due to Lemma 4.7. To see

this, we suppose that ϕ(G) is a copy of G in ∂rG and will obtain a contradiction by finding a copy of
G+ in G. To do so, we start by fixing for each edge A of G an edge eA of G containing ϕ(A). Then
we repeat the following procedure: while some eA contains some ϕ(x) with x /∈ A, replace eA by some
edge (eA \ {ϕ(x)}) ∪ {v} with v /∈ Imϕ. As |GA

A | > ks for all A ∈ ∂G we can always choose v as
required. The procedure terminates with a copy of G+, so the proof is complete.

We conclude this subsection with the proof of its main lemma.

Proof of Lemma 4.4. Consider uniformly random (A,B,C) with C ⊂ B ⊂ A ⊂ [n] and |C| = r,
|B| = ℓ, |A| = k. Write p = P(A ∈ F , C /∈ ∂r

cF) and q = P(A ∈ F , B /∈ H).
For any C /∈ ∂r

cF we have P(A ∈ F | C) = µ(FC
C ) ≤ c, so p ≤ c. On the other hand, p ≥ q

(
ℓ
r

)−1
,

as for any A ∈ F and B /∈ H we have P(C /∈ ∂r
cF | A,B) ≥

(
ℓ
r

)−1
. We deduce q ≤

(
ℓ
r

)
c = µ(F)/2.

Thus µ(H) = P(B ∈ H) ≥ P(A ∈ F)− q ≥ µ(F)/2.
As ∂rH ⊂ ∂r

cF , Lemma 4.5 gives µ(∂r
cF) ≥ (µ(F)/2)r/ℓ.

Now suppose G ∈ G′(r, s,∆) and ∂r
cF is G-free. Then H is G+-free, so Lemma 4.8 gives µ(∂H) ≥

(µ(H)− (s/n)ℓ/C)n/sℓ2. As ∂r∂H ⊂ ∂r
cF , Lemma 4.5 gives the required bound.

4.2 Shadow embeddings
The following lemma implements a simple greedy algorithm for cross embedding any bounded degree
r-graph in a collection of nearly complete r-graphs (more generally, we also allow smaller edges).

Lemma 4.9. Let 0 < η ≪ (r∆)−1 and G = {e1, . . . , es} be a hypergraph of maximum degree ∆
with each |ei| = ri ≤ r. Suppose for each i ∈ [s] that Gi is an ri-graph on [n], where n ≥ 2rs and
µ(Gi) > 1− η. Then G1, . . . ,Gs cross contain G.

Proof. Write V (G) = {v1, . . . , vm}. We may assume that G has no isolated vertices, so m ≤
∑

i dG(vi) ≤
rs ≤ n/2. We will construct an injection ϕ : V (G) → [n] such that each ϕ(ej) ∈ Gj . To do so, we
define ϕ sequentially so that, for each 0 ≤ t ≤ m the definition of ϕ on Vt := {vi : i ≤ t} is t-good,
meaning that for each edge ej we have

ϕ(ej ∩ Vt) ∈ ∂cjtGj , where cjt = 1− η(2∆)|ej∩Vt|. (1)
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Note that (1) holds whenever ej ∩ Vt = ∅, as µ(Gj) > 1− η; in particular, (1) holds when t = 0.
It remains to show for any 0 ≤ t < m that we can extend any t-good embedding ϕ to a (t+1)-good

embedding. To see this, first note that we only need to check (1) when ej is one of at most ∆ edges
containing vt+1. Fix any such edge ej , let f = ϕ(ej ∩ Vt), and let Bj be the set of x ∈ [n] such that
choosing ϕ(vt+1) = x would give ϕ(ej ∩ Vt+1) = f ∪ {x} /∈ ∂cj(t+1)

Gj . Then

|Bj |η(2∆)|f |+1 ≤
∑
x∈B

(
1− µ

(
(Gj)

f∪{x}
f∪{x}

))
≤ n(1− µ((Gj)

f
f )) < nη(2∆)|f |,

so |Bj | < n/2∆. Summing over at most ∆ choices of j forbids fewer than n/2 choices of x. The
requirement that ϕ be injective also forbids fewer than n/2 vertices, so we can extend ϕ as required.

4.3 Lifted embeddings
We conclude this section by proving the two embedding lemmas assumed above, thus completing the
proof of Theorem 1.8.

Proof of Lemma 2.9. Suppose n, s, k1, . . . , ks ∈ N with C ≤ ki ≤ n
Cs for all i ∈ [s], and Fi ⊂

(
[n]
ki

)
with each µ(Fi) ≥ e−ki/C + Cski/n. Let η be as in Lemma 4.9. We can assume C is large enough
so that Proposition 4.3 gives µ (Gi) ≥ 1 − η for each i ∈ [s], where Gi is the r-graph on [n] consisting
of all e ∈

(
[n]
r

)
with µ((Fi)

e
e) ≥ Cski/2n. By Lemma 4.9 we can find R1, . . . , Rs forming a copy of

G with Ri ∈ Gi for all i ∈ [s]. Let R = R1 ∪ · · · ∪ Rs. By the union bound, each µ
(
(Fi)

Ri

R

)
≥

µ
(
(Fi)

Ri

Ri

)
− |R|ki/n ≥ Cski/4n for C ≥ 8, so Lemma 3.6 gives a cross matching E1, . . . , Es in

(F1)
R1

R , . . . , (Fs)
Rs

R . Now F1, . . . ,Fs cross contain a copy of G+ with edges R1 ∪ E1, . . . , Rs ∪ Es.

Proof of Lemma 2.10. Let G ∈ G(r, s,∆) and C ≫ C1 ≫ C2 ≫ r∆. Suppose for a contradiction that
F ⊂

(
[n]
k

)
with C ≤ k ≤ n/Cs is (C1s, sk/C2n)-uncapturable but G+-free.

Let B be a maximal collection of pairwise disjoint sets where each B ∈ B has |B| ≤ r + 1 and
µ(FB

B ) > β := e−k/C1 + C1sk/n. We claim that |B| < s. To see this, suppose for a contradiction
that we have distinct B1, . . . , Bs in B. Let B =

⋃s
i=1 Bi and Fi = FBi

B for i ∈ [s]. Then each
µ(Fi) > β − |B|k/n > e−k/C1 + C1sk/2n. Now Lemma 2.9 gives a cross copy of G+ in F1, . . . ,Fs,
contradicting F being G+-free, so |B| < s, as claimed.

Now let G = F∅
B with B =

⋃
B. Then G is (r+1, 2β)-global by definition of B and µ(G) > sk/C2n

by uncapturability of F . Let H = {B ∈
(
[n]
C2

)
: ∂rB ⊂ ∂r

cG}, where c = µ(G)/2
(
C2

r

)
> sk/nC2r

2 .
We have µ(H) ≥ µ(G)/2 by Lemma 4.4. We will show that ∂rH is G-free. Then Lemma 4.7 with
C2/2 ≫ r∆ in place of C will give the contradiction sk/C2n < µ(G) ≤ 2µ(H) ≤ (s/n)2.

It remains to show that ∂rH is G-free. Suppose for a contradiction that A1, . . . , As is a copy of G
in ∂rH. Let A =

⋃s
i=1 Ai and Gi = GAi

A for i ∈ [s]. Then each Gi is (1, 4β)-global by Lemma 2.2 with
µ(Gi) > c − |A| · 2βk/n > c/2. Now each Gi is (C1s, c/4)-uncapturable by Lemma 2.4, so G1, . . . ,Gs

cross contain a matching by Lemma 3.1 with m = s. However, this contradicts F being G+-free.

5 Refined junta approximation
In this final section of the part we will prove Theorem 1.9, our refined junta approximation result,
which will play a key role in the proofs of our results in the next part. We start in the first subsection
by setting out the strategy of the proof and implementing it assuming an embedding lemma, whose
proof will then occupy the remainder of the section.
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5.1 Strategy
Our embedding strategy considers a setup below that blends the two embedding strategies used in the
proof of Theorem 1.8: it has elements of Lemma 2.9 (mapping a crosscut to a junta) and of Lemma
2.10 (embedding in the fat shadow and lifting via uncapturability).

Setup 5.1. Let G ∈ G′(r, s,∆). Let S be a crosscut in G+(r + 1) with |S| = σ := σ(G). Suppose
S1 ⊂ S with |S1| = σ1 ≤ σ and {Gx

x : x ∈ S1} vertex disjoint. Let H1, . . . ,Hσ1 be the inclusive links
G ∗ x = {e ∈ G : x ∈ e} for x ∈ S1 and Hσ1+1, . . . ,Hσ be the exclusive links Gx

x for x ∈ S \ S1.
Let V1 =

⋃σ1

i=1 V (Hi) and suppose {j : V (Hj) ∩ V1 ̸= ∅} = [σ2]. Let H ′
i = Hi for i ∈ [σ1] and

H ′
i = {e ∩ V1 : e ∈ Hi} for i ∈ [σ1 + 1, σ2].

We note that σ ≤ s ≤ ∆σ. To use Setup 5.1 for embedding G+ in F ⊂
(
[n]
k

)
it suffices to find

J = {jσ1+1, . . . , jσ} ⊂ [n] and a cross copy of H+
1 , . . . ,H+

σ in F1, . . . ,Fσ, where Fi = F∅
J for i ∈ [σ1]

and Fi = F ji
J for i ∈ [σ1 + 1, σ]. This will be achieved by the following lemma.

Lemma 5.2. Let C ≫ C1 ≫ θ−1 ≫ ε−1 ≫ r∆ and C < k < n/Cs. Let G,H1, . . . ,Hσ be as in
Setup 5.1 with σ1 ≤ θσ. Let Fi ⊂

(
[n]
k

)
for i ∈ [σ1] and Fi ⊂

(
[n]
k−1

)
for i ∈ [σ1 + 1, σ]. Suppose Fi

is (C1σ1, εσ1k/n)-uncapturable for i ∈ [σ1], that µ(Fi) ≥ 1 − θ for i ∈ [σ1 + 1, σ2], and µ(Fi) ≥ β :=
e−k/C1 + C1sk/n for i ∈ [σ2 + 1, σ]. Then F1, . . . ,Fσ cross contain H+

1 , . . . ,H+
σ .

Next we deduce Theorem 1.9 from Lemma 5.2.

Proof of Theorem 1.9. Let G ∈ G(r, s,∆) with σ(G) = σ and C ≫ C1 ≫ θ−1 ≫ δ−1 ≫ ε−1 ≫ r∆.
Suppose F ⊂

(
[n]
k

)
with C ≤ k ≤ n/Cs is G+-free with |F| > |Sn,k,σ−1| − δ

(
n−1
k−1

)
. We need to find

J ∈
(

[n]
σ−1

)
with |F∅

J | ≤ ε
(
n−1
k−1

)
.

As in the proof of Theorem 1.8 we let J = {i ∈ [n] : µ(F i
i ) ≥ β}, where β := e−k/C1 +C1sk/n. We

recall that |J | ≤ σ−1 and F∅
J is (a, µ(F∅

J)/2)-uncapturable with a = µ(F∅
J )n/4kβ. Replacing ‘ε’ in that

proof by .1θ2 we obtain |F∅
J | ≤ .1θ2|Sn,k,σ−1| ≤ .2θ2(σ−1)

(
n−1
k−1

)
. We may assume σ ≥ 2θ−1, otherwise

|F∅
J | ≤ θ

(
n−1
k−1

)
. As |F∅

J | ≥ |F|− |Sn,k,J | ≥ (.9(σ− 1− |J |)− δ)
(
n−1
k−1

)
we deduce |J | > (1− .3θ2)(σ− 1),

so 1 ≤ σ1 := σ − |J | ≤ 1 + .3θ2σ ≤ θσ.
Now we let S, S1, H1, . . . ,Hσ be as in Setup 5.1, where we can greedily choose S1 ⊂ S with |S1| = σ1

such that {Gx
x : x ∈ S1} are vertex disjoint, as any partial choice of S1 forbids at most σ1(∆r)2 < σ

vertices of S. We write J = {jσ1+1, . . . , jσ}, let Fi = F∅
J for i ∈ [σ1] and Fi = F ji

J for i ∈ [σ1 + 1, σ],
where we can assume |Fσ1+1| ≥ · · · ≥ |Fσ|. We note that µ(Fσ2) > 1− θ, as otherwise we would have
the contradiction |F| < |F∅

J |+
(
σ2−σ1+(σ−σ2)(1−θ)

)(
n−1
k−1

)
<

(
(1+ .2θ2)σ−σ1−θ(σ−σ2)

)(
n−1
k−1

)
<

|Sn,k,σ−1| − δ
(
n−1
k−1

)
.

Now we must have µ(F∅
J) ≤ εσ1k/n; otherwise F∅

J is (C1σ1, εσ1k/2n)-uncapturable, so F1, . . . ,Fσ

cross contain H+
1 , . . . ,H+

σ by Lemma 5.2, contradicting F being G+-free. As |F∅
J | ≥ |F| − |Sn,k,J | ≥

(.9(σ1 − 1)− δ)
(
n−1
k−1

)
we deduce .9(σ1 − 1)− δ ≤ εσ1, so σ1 = 1 and µ(F∅

J) ≤ εk/n.

The remainder of the section will be devoted to the proof of Lemma 5.2. Similarly to the proofs of
our previous embedding results (Lemmas 2.9 and 2.10), the strategy will be to find shadow embeddings
and then lifting embeddings. However, there are further technical challenges to overcome in the current
setting, particularly when the uniformity k of our families is small, when we need to ‘pause’ the shadow
embedding after embedding H ′

i = Hi for i ∈ [σ1], then lift this part of the embedding, then complete
the shadow embedding, and finally lift the remainder of the embedding. The shadow embedding lemma
will be presented in the next subsection. The third subsection contains further results on upgrading
uncapturability to globalness, which we call ‘enhanced upgrading’, as they obtain globalness parameters
that are significantly stronger than one might expect, and this will be a crucial technical ingredient
of the proof. In the fourth subsection we establish an improved lifting result that allows for a much
weaker uncapturability assumption than that in Lemma 3.1. We conclude with the proof of Lemma
5.2 in the final subsection.
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5.2 Shadow embeddings
Here we extend the argument used in Lemma 4.9 to prove the following lemma that will be applied to
show that the fat shadows of F1, . . . ,Fσ as in Lemma 5.2 cross contain H1, . . . ,Hσ. Whereas before we
were embedding into nearly complete hypergraphs, now many of our hypergraphs will be quite sparse,
which makes the embedding more challenging: the idea is to replace the naive greedy arguments by
Theorem 4.6, here making key use of our observation that we can assume G is r-partite.

Lemma 5.3. Let C ≫ η−1 ≫ K ≫ r∆ and 0 < θ < η. Let G,H1, . . . ,Hσ be as in Setup 5.1
and G1, . . . ,Gσ ⊂

(
[n]
r

)
with n > Cσ. Suppose µ(Gi) ≥ 1 − η for i ∈ [σ2 + 1, σ], µ(Gi) ≥ 1 − θ for

i ∈ [σ1+1, σ2] and µ(Gi) ≥ θ1/2r+n−1/K+r∆σ1/n for i ∈ [σ1]. Let c = 1−θ1/r. Then ∂cG1, . . . , ∂cGσ2

cross contain H ′
1, . . . ,H

′
σ2

and G1, . . . ,Gσ cross contain H1, . . . ,Hσ.

Proof. For each i ∈ [σ1 + 1, σ2] we define Gr
i , . . . ,G0

i recursively by Gr
i = Gi and Gj−1

i = ∂j−1
1−θ1/rGj

i for
j ∈ [r]. Clearly each Gj

i ⊂ ∂cjGi where cj = 1− (r − j)θ1/r.
We claim that each µ(Gj

i ) ≥ 1 − θj/r. To see this, we argue by induction on r − j. For r − j = 0
we have µ(Gr

i ) ≥ 1 − θ by assumption. For the induction step, consider any j ∈ [r] and uniformly
random A ⊂ B ⊂ [n] with |A| = j − 1 and |B| = j. Given any A /∈ Gj−1

i we have P(B /∈ Gj
i ) ≥ θ1/r,

so 1− µ(Gj
i ) ≥ θ1/r(1− µ(Gj−1

i )). The claim follows.
Next we will construct a cross embedding ϕ of H ′

1, . . . ,H
′
σ2

in ∂cG1, . . . , ∂cGσ2
. We recall that

H ′
i = Hi for i ∈ [σ1] and all H ′

i are defined on V1, which is the disjoint union of V (H1), . . . , V (Hσ1).
We proceed in σ1 steps, defining ϕ on V (Ht) at step t. When ϕ has been defined on Ut :=

⋃
i≤t V (Hi),

we say ϕ is t-good if ϕ(e ∩ Ut) ∈ G|e∩Ut|
i for each i ∈ [σ2] and e ∈ Gi with e ∩ Ut ̸= ∅.

We note that if ϕ is t-good then ϕ(Hi) ⊂ Gr
i = Gi = ∂cGi for all i ∈ [t] and if ϕ is σ1-good then

ϕ(Hi) ⊂ ∂cGi for all i ∈ [σ2]. As ϕ defined on U0 = ∅ is trivially 0-good, it remains to show for any
t ∈ [σ1] that we can extend any (t− 1)-good ϕ to a t-good embedding.

For clarity of exposition, we start by showing the case t = 1. Obtain H1 from G1 by removing any
edge e such that f /∈ G|f |

i for some ∅ ≠ f ⊂ e and i ∈ [σ2] with V (Hi)∩ V (H1) ̸= ∅. There are at most
r∆2 such i, so by a union bound and the above claim we have µ(H1) ≥ µ(G1)− r∆22rθ1/r > n−1/K .
We can assume that G is r-partite, so by Theorem 4.6 we can find an embedding ϕ′

1 of N1 := {e ∈ G :
e ∩ V (H1) ̸= ∅} in H1. Now ϕ = ϕ′ |V (H1) is 1-good.

Now we consider general t ∈ [σ1]. Obtain Ht from (Gt)
∅
ϕ(Ut−1)

by removing any edge e such that

f /∈ G|f |
i for some ∅ ̸= f \ ϕ(A′) ⊂ e where A ∈ Hi with V (Hi) ∩ V (Ht) ̸= ∅ and A′ = A ∩ Ut−1. For

any such non-empty A′, as ϕ is (t − 1)-good we have ϕ(A′) ∈ G|A′|
i , so µ((Gj

i )
A′

A′) ≥ 1 − (j − |A′|)θ1/r
for any |A′| ≤ j ≤ r. Thus a union bound gives µ(Ht) ≥ µ(Gt) − |Ut−1|k/n − r∆22rrθ1/r > n−1/K .
Now as in the case t = 1 we obtain a t-good extension by embedding Nt := {e ∈ G : e ∩ V (Ht) ̸= ∅}
in Ht and restricting to V (Ht).

Thus we have constructed a cross embedding ϕ of H ′
1, . . . ,H

′
σ2

in ∂cG1, . . . , ∂cGσ2
. To complete the

proof we extend ϕ to a cross embedding H1, . . . ,Hσ in G1, . . . ,Gσ, which requires ϕ(e \ V1) ∈ (Gi)
e∩V1

e∩V1

for all e ∈ Hi, i ∈ [σ1 + 1, σ]; this is possible by Lemma 4.9.

5.3 Enhanced upgrading
This subsection provides further results on upgrading uncapturability to globalness with enhanced
parameters that will be crucial in later proofs. We start by showing that every family has a restriction
that is global or large.

Lemma 5.4. Let b, r ∈ N, α > 1 and F ⊂
(
[n]
k

)
with k ≥ br. Then there is B ⊂ [n] with |B| ≤ br such

that if µ(FB
B ) < αbµ(F) then FB

B is (r, αµ(FB
B ))-global with µ(FB

B ) ≥ α1B ̸=∅µ(F).

Proof. We consider F0,F1, . . . , where F0 = F , and if i < b and Fi is not (r, αµ(Fi))-global then we
let Fi+1 = (Fi)

Bi

Bi
so that |Bi| ≤ r and µ(Fi+1) > αµ(Fi). When this sequence terminates at some Ft

we let B =
⋃

i≤t Bi. Clearly FB
B = Ft has the required properties.
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By iterating the previous result we obtain the following upgrading lemma.

Lemma 5.5. Suppose b, r,m ∈ N and for each i ∈ [m] that αi > 1 and Fi ⊂
(
[n]
ki

)
with rb ≤

ki ≤ n/2rmαi is (rbm, βi)-uncapturable with αb
iβi > 2rmki/n. Then there are disjoint B1, . . . , Bm

with each |Bi| ≤ rb such that, setting Gi = (Fi)
Bi

B where B =
⋃

i Bi, if µ(Gi) < αb
iβi/2 then Gi is

(r, 4αiµ(Gi))-global with µ(Gi) > α
1Bi ̸=∅
i βi/2.

Proof. We will choose B1, . . . , Bm sequentially and define F0
i , . . . ,Fm

i for i ∈ [m] by F0
i = Fi, F i

j =

(F i−1
j )∅Bi

for j ̸= i and F i
i = (F i−1

i )Bi

Bi
. At step i, we have µ(F i−1

i ) ≥ βi by uncapturability of
Fi, so by Lemma 5.4 we can choose Bi with |Bi| ≤ rb such that if µ(F i

i ) < αb
iµ(F

i−1
i ) then F i

i is
(r, αµ(F i

i ))-global with µ(F i
i ) ≥ α

1Bi ̸=∅
i βi. After step m, for any i ∈ [m] we have Gm

i = Gi = (Fi)
Bi

B .
If µ(F i

i ) ≥ αb
iµ(F

i−1
i ) then µ(Gi) ≥ αb

iβi − rmki/n ≥ αb
iβi/2. Otherwise, F i

i is (r, αiµ(F i
i ))-global

with µ(F i
i ) ≥ α

1Bi ̸=∅
i µ(F), and (n/2kiαi, µ(F i

i )/2)-uncapturable by Lemma 2.4, so µ(Gi) > µ(F i
i )/2 ≥

α
1Bi ̸=∅
i βi/2, and Gi is (r, 4αiµ(Gi))-global by Lemma 2.2.

For our final upgrading lemma we apply the previous one twice: the idea is that the globalness
from the first application provides the second application with much better uncapturability.

Lemma 5.6. Suppose b, r,m ∈ N and for each i ∈ [m] that Fi ⊂
(
[n]
ki

)
with rb ≤ ki ≤ n/2rmb2 is

(2m,βi)-uncapturable with βi > 8rmki/bn. Then there are disjoint B1, . . . , Bm with each |Bi| ≤ rb+2
such that, setting Gi = (Fi)

Bi

B where B =
⋃

i Bi, if µ(Gi) < 2bβi/8 then Gi is (r, 8µ(Gi))-global with
µ(Gi) > 21Bi ̸=∅βi/8.

Proof. We start by applying Lemma 5.5 with (b, 1, 2) in place of (αi, r, b). This gives disjoint S1, . . . , Sm

with each |Si| ≤ 2 such that, setting Hi = (Fi)
Si

S where S =
⋃

i Si, if µ(Hi) < b2βi/2 then Hi is
(1, 4bµ(Hi))-global with µ(Hi) > βi/2.

We claim that each Hi is (rbm, βi/4)-uncapturable. Indeed, this holds by a union bound if µ(Hi) ≥
b2βi/2, as then µ((Hi)

∅
B) ≥ µ(Hi) − |J |ki/n ≥ βi/4 whenever |J | ≤ rbm, as βi ≥ 8rmki/bn. On the

other hand, if Hi is (1, 4bµ(Hi))-global with µ(Hi) > βi/2 then Hi is (n/2bki, µ(Hi)/2)-uncapturable
by Lemma 2.4, so (rbm, βi/4)-uncapturable, as ki ≤ n/2rmb2.

Now we can apply Lemma 5.5 again to H1, . . . ,Hm with (2, r, b) in place of (αi, r, b). This gives
disjoint S′

1, . . . , S
′
m with each |S′

i| ≤ rb such that, setting Gi = (Hi)
S′
i

S′ where S′ =
⋃

i S
′
i, if µ(Gi) <

2bβi/8 then Gi is (r, 8µ(Gi))-global with µ(Gi) > 2
1S′

i
̸=∅βi/8. Thus Bi = Si ∪ S′

i for i ∈ [m] are as
required.

5.4 Refined capturability for matchings
Here we prove the following sharper version of Lemma 3.1, obtaining cross matchings under a much
weaker uncapturability condition.

Lemma 5.7. Let C ≫ K ≫ d ≥ 1 and Fi ⊂
(
[n]
ki

)
with k ≤ ki ≤ Kk for i ∈ [s], where 2d ≤ k ≤ n/Cs.

Suppose Fi is (2dm, (2mki/n)
d)-uncapturable for i ∈ [m] and µ(Fi) > 12(s + Km log n

mk )ki/n for
i > m. Then F1, . . . ,Fs cross contain a matching.

Proof. We start by upgrading uncapturability to globalness. We apply Lemma 5.5 with r = 1, b = 2d,
αi =

√
n/mki, βi = (mki/n)

d noting that each rb ≤ ki ≤ n/2rmαi and αb
iβi = 2d > 2rmki/n,

obtaining B =
⋃

i Bi with each |Bi| ≤ 2d such that each Gi = (Fi)
Bi

B is (r, 4αiµ(Gi))-global with
µ(Gi) > (2mki/n)

d/2. We note by Lemma 2.4 that Gi is (n/8αiki, (2mki/n)
d/4)-uncapturable. Now

we pass to the biased setting: we let pi = ki/n and note that Hi = G↑
i is (n/8αiki, (2mki/n)

d/16)-
uncapturable by Lemma 3.2.

Now we will apply Theorem 3.5.2 to choose S1, . . . , Sm with each |Si| < K log n
mk and define

H0
i , . . . ,Hm

i for i ∈ [s] by H0
i = Hi, Hi

j = (Hi−1
j )∅Si

for j ̸= i and Hi
i = (Hi−1

i )Si

Si
. At step i, we
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have µ(Hi−1
i ) ≥ (2mki/n)

d/16 by uncapturability of Hi, as
∑

j<i |Sj | < Km log n
mk and n/8αiki ≥

1
8

√
nm/Kk, using n/mk ≥ C ≫ K.
Applying Theorem 3.5.2 with η < 1/2d and

√
K in place of K we obtain Si ⊂ [n] with |Si| ≤√

K logµ(Hi−1
i )−1 < K log n

mk and µKpi
(Hi

i) ≥ µη >
√
mpi, so µKpi

(Hm
i ) ≥ √

mpi − |S|Kpi >
3m(Kpi). For i > m, by Lemma 3.2 and a union bound we have µpi

(Hm
i ) > µ(Fi)/4 − |S|pi > 3spi.

Thus by Lemma 3.8 there is a cross matching in Hm
1 , . . . ,Hm

s , and so in F1, . . . ,Fs.

5.5 Lifted embeddings
We conclude this section by proving Lemma 5.2 which completes the proof of Theorem 1.9. As
mentioned earlier, the proof becomes more complicated as the uniformity k of our family decreases.
When it is quite large we can bound the fat shadow using Fairness, but otherwise we must rely on the
weaker estimates from Lemma 4.4, so there are additional technical challenges, resolved by enhanced
upgrading and in one case pausing the shadow embedding for a preliminary lifting step.

Proof of Lemma 5.2. Let C ≫ C1 ≫ θ−1 ≫ ε−1 ≫ r∆ and C < k < n/Cs. Let G,H1, . . . ,Hσ

be as in Setup 5.1 with σ1 ≤ θσ. Let Fi ⊂
(
[n]
k

)
for i ∈ [σ1] and Fi ⊂

(
[n]
k−1

)
for i ∈ [σ1 + 1, σ].

Suppose Fi is (C1σ1, εσ1k/n)-uncapturable for i ∈ [σ1], that µ(Fi) ≥ 1 − θ for i ∈ [σ1 + 1, σ2], and
µ(Fi) ≥ β := e−k/C1 + C1sk/n for i ∈ [σ2 + 1, σ]. We need to show that F1, . . . ,Fσ cross contain
H+

1 , . . . ,H+
σ .

We consider cases according to the size of k. We start with the case k ≥
√
C1 log

n
σ1

, for which
we will use enhanced upgrading. We apply Lemma 5.6 to F1, . . . ,Fσ1

with m = σ1, b = C1 + log2
s
m ,

each βi = εmk/n and 2r in place of r, noting that 2rb ≤ k ≤ n/2rmb2 and βi > 8rmk/bn. This
gives disjoint B1, . . . , Bm with each |Bi| ≤ 2rb + 2 such that, setting Gi = (Fi)

Bi

B where B =
⋃

i Bi,
if µ(Gi) < 2bεmk/8n then Gi is (2r, 8µ(Gi))-global with µ(Gi) > εmk/8n > m/n ≥ e−k/

√
C1 . For

i ∈ [σ1 + 1, σ], writing Gi = (Fi)
∅
B , we have µ(Gi) ≥ µ(Fi)− |B|k/n ≥ e−k/C1 + C1sk/2n.

By Fairness (Proposition 4.3), with
√
C1 in place of C, writing ci = (1 − ε)µ(Gi) for i ∈ [σ] we

have µ(∂r′

ciGi) ≥ 1− ε for r′ ∈ {r− 1, r}, so ∂c1G1, . . . , ∂cσGσ cross contain a copy ϕ(H1), . . . , ϕ(Hσ) of
H1, . . . ,Hσ by Lemma 4.9. We write V ′ = Imϕ and consider H1, . . . ,Hs corresponding to the edges
A1, . . . , As of H1, . . . ,Hσ, where for each edge Aj of Hi with i ∈ [σ] we let Hj = (Gi)

ϕ(Aj)
V ′ . To complete

the proof of this case it suffices to show that H1, . . . ,Hs cross contain a matching.
To do so, we verify the conditions of Lemma 3.1. Consider any Aj ∈ Hi. If i > σ1 or i ∈ [σ1] with

µ(Gi) ≥ 2bεmk/8n > C2
1sk/n then µ(Hj) ≥ ci − |V ′|k/n > C1sk/3n. Now consider i ∈ [σ1] such that

Gi is (2r, 8µ(Gi))-global with µ(Gi) > εmk/8n. Then Hj and H′
j = (Gi)

ϕ(Aj)

ϕ(Aj)
are (r, 16µ(Gi))-global by

Lemma 2.2. As µ(H′
j) > ci = (1 − ε)µ(Gi), by Lemma 2.4 H′

j is (n/40k, µ(H′
j)/2)-uncapturable, so

µ(Hj) ≥ µ(H′
j)/2 > εmk/20n, and Hj is (n/80k, µ(Hj)/2)-uncapturable again by Lemma 2.4. Thus

the required conditions hold.
Henceforth we can assume k <

√
C1 log

n
σ1

. In this case we upgrade uncapturability to globalness
using Lemma 2.6 to obtain disjoint S1, . . . , Sσ1 with each |Si| ≤ 2r such that, setting Gi = (Fi)

Si

S where
S =

⋃
i Si, whenever µ(Gi) < β we have Si = ∅ and Gi is (2r, 2β)-global with µ(Gi) > εσ1k/n. For

i > σ1 we set Gi = (Fi)
∅
S and note that µ(Gi) ≥ µ(Fi)−|S|k/n > β/2. As before, for any i /∈ [σ1+1, σ2]

with µ(Gi) > β/2 Fairness gives µ(∂r′

ciGi) ≥ 1 − ε for r′ ∈ {r − 1, r}, where ci = (1 − ε)µ(Gi). For
i ∈ [σ1 + 1, σ2] we have the better bound µ(∂r′

ciGi) ≥ 1−
√
θ where ci = 1−

√
θ from Lemma 4.2. For

i ∈ I := {i : µ(Gi) < β/2} we note that Gi is G+-free, as Si = ∅, so we can bound the fat shadow by
Lemma 4.4: we take ℓ = k, use (2ε)−1 ≫ r∆ in place of C, and write ci = µ(Gi)/2

(
k
r

)
≥ µ(Gi)/2k

r, to
obtain

µ(∂r
ciGi) ≥

(
(µ(Gi)/2− (s/n)2kε)n/sk2

)r/(k−1) ≥ z := (σ1/sk
2)2r/k − (s/n)rε.

Next we consider the case that k ≥ 2C1 log
s
σ1

. Then z ≥ 1− ε, so ∂c1G1, . . . , ∂cσGσ cross contain a
copy ϕ(H1), . . . , ϕ(Hσ) of H1, . . . ,Hσ by Lemma 4.9. With notation as in the previous case, it remains
to show that H1, . . . ,Hs cross contain a matching. To do so, we verify the conditions of Lemma 5.7,
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taking m = |I|, d = 2 and K = ε−1. Consider any Aj ∈ Hi. If i /∈ I then µ(Hj) ≥ β/3− | Imϕ|k/n >

12(s + ε−1|I| log n
k|I| )k/n, as |I|/n ≤ σ1/n < e−k/

√
C1 , so |I|k/n · log n

k|I| < k2e−k/
√
C1 < β2. Now

suppose i ∈ I, so that Gi is (2r, 2β)-global with µ(Gi) > εσ1k/n. Then Hj and H′
j = (Gi)

ϕ(Aj)

ϕ(Aj)

are (r, 4β)-global by Lemma 2.2. As µ(H′
j) > ci ≥ µ(Gi)/2k

r, by Lemma 2.4 H′
j is (a, µ(H′

j)/2)-
uncapturable, where a = µ(Gi)n/8kβ > εσ1/8β > rs ≥ | Imϕ| as σ1/s ≥ e−k/2C1 ≥

√
β, since

ks/n < k∆σ1/n < ∆ke−k/
√
C1 . Hence µ(Hj) ≥ µ(H′

j)/2 > µ(Gi)/4k
r > 2(2|I|k/n)2, and Hj is

(4|I|, µ(Hj)/2)-uncapturable again by Lemma 2.4. Thus the required conditions hold.
It remains to consider the case k < 2C1 log

s
σ1

. We start by applying 5.3 to (∂r
ciGi : i ∈ [σ2]) with

θ0 =
√
σ1/σ ≤

√
θ in place of θ, recalling for i ∈ [σ1 + 1, σ2] that µ(∂r

ciGi) ≥ 1 −
√
θ ≥ 1 − θ0 and

µ(∂r
ciGi) ≥ 1− ε for i ∈ [σ1] \ I, and noting for i ∈ I that µ(∂r

ciGi) ≥ θ
1/2r
0 +n−ε + r∆σ1/n. This gives

a cross embedding ϕ of H ′
1, . . . ,H

′
σ2

in (∂cciGi : i ∈ [σ2]), where c = 1− θ
1/r
0 .

Next we extend (ϕ(H ′
i) : i ∈ [σ1]) = (ϕ(Hi) : i ∈ [σ1]) to a cross embedding (ϕ(H+

i ) : i ∈ [σ1]) in
(Gi : i ∈ [σ1]), by finding a cross matching in (Hj : j ∈ [s1]) corresponding to the edges A1, . . . , As1

of H1, . . . ,Hσ1
, where for each edge Aj of Hi with i ∈ [σ1] we let Hj = (Gi)

ϕ(Aj)
Imϕ . This is possible by

Lemma 5.7, which applies similarly to the previous case, where for uncapturability of H′
j we note that

now | Imϕ| ≤ rs1 ≤ r∆σ1.
Finally, we extend to a cross embedding (ϕ(H+

i ) : i ∈ [σ]) in (Gi : i ∈ [σ]) by finding a cross copy
of (Aj \ V1 : s1 < j ≤ s) in (Hj : s1 < j ≤ s), where for each edge Aj of Hi with σ1 < i ≤ σ we let
Hj = (Gi)

ϕ(Aj∩V1)
Imϕ . This is possible by Lemma 2.9, as each µ(Hj) ≥ µ(Gi) − ∆σ1k

2/n > β/4, using
k < 2C1 log

s
σ1

and σ1 ≤ θσ.

6 The Huang–Loh–Sudakov Conjecture
Here we prove Theorem 1.2, which establishes the Huang–Loh–Sudakov Conjecture. In the first sub-
section we prove a strong stability version that has independent interest. We then deduce the exact
result in the second subsection.

6.1 A strong stability result
Here we prove the following strong approximate version of the Huang–Loh–Sudakov conjecture, which
will be refined to obtain the exact result in the following subsection.

Theorem 6.1. Let 0 < C−1 ≪ ε and Fi ⊂
(
[n]
ki

)
with C ≤ ki ≤ n/Cs for all i ∈ [s]. If F1, . . . ,Fs

are cross free of a matching and each |Fi| ≥ |Sn,ki,s−1| − (1− ε)
(
n−1
ki−1

)
then there is J ∈

(
[n]
s−1

)
so that

|Fi \ Sn,ki,J | ≤ ε
(
n−1
ki−1

)
for all i ∈ [s].

The idea of the proof will be to consider A = {a1, . . . , aℓ} ⊂ [n] maximal such that there are distinct
b1, . . . , bℓ so that all (Fbi)

ai
ai

are large. This motivates the setting of the following lemma.

Lemma 6.2. Let 0 < C−1 ≪ β ≪ ε ≤ 1 and m, ℓ, n, s, k1, . . . , ks ∈ N with ℓ ≤ m ≤ s and each
ki ≤ n/Cs. Suppose Fi ⊂

(
[n]
ki

)
and Ji :=

{
j ∈ [n] : µ

(
(Fi)

j
j

)
≥ β

}
for each i ∈ [s] are such that

(a) there are distinct a1, . . . , aℓ ∈ [n] with ai ∈ Ji for i ∈ [ℓ];

(b) µ
(
(Fi)

∅
Ji
) ≥ ε(m− |Ji|)ki/n and Ji ⊂ A := {a1, . . . , aℓ} for each i ∈ [ℓ+ 1,m];

(c) µ
(
Fi

)
≥ Ckis/n for all i ∈ [m+ 1, s].

Then F1, . . . ,Fs cross contain a matching.
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Proof. It suffices to check the conditions of Lemma 3.1 for G1, . . . ,Gs defined by Gi = (Fi)
ai

A for i ∈ [ℓ]

and Gi = (Fi)
∅
A otherwise. We do so with m − ℓ in place of m and (Gi : ℓ < i ≤ m) in place of

F1, . . . ,Fm. For i ∈ [s] \ [m] we have µ(Gi) ≥ µ(Fi) − |A|ki/n ≥ Ckis/2n. Similarly, for i ∈ [ℓ] we
have µ(Gi) ≥ µ((Fi)

ai
ai
) − |A|ki/n ≥ β/2 ≥ (β/2)(Ckis/n) ≥ C1/2kis/2n. For i ∈ [ℓ + 1,m] we note

by definition of Ji that Gi is (1, 2β)-global with µ(Gi) ≥ µ((Fi)
∅
Ji
)− |A \ Ji|βki/n ≥ ε(m− ℓ)ki/n, so

(ε(m− ℓ)/4β, ε(m− ℓ)ki/2n)-uncapturable by Lemma 2.4. Thus the required conditions hold.

We deduce our stability result as follows.

Proof of Theorem 6.1. Let 0 < C−1 ≪ β ≪ ε ≤ 1/2 and Fi ⊂
(
[n]
ki

)
with ki ≤ n/Cs for all i ∈ [s]. Let

J1, . . . , Js be as in Lemma 6.2. Let A = {a1, . . . , aℓ} ⊂ [n] be maximal such that there are distinct
b1, . . . , bℓ with ai ∈ Jbi for all i ∈ [ℓ]. Without loss of generality we may assume bi = i for all i ∈ [ℓ].
By maximality, we have Ji ⊂ {a1, . . . , aℓ} for all i ∈ [ℓ+ 1, s].

We may assume ℓ < s, and that µ
(
(Fh)

∅
Jh

)
< .1ε(s − |Jh|)kh/n for some h ∈ [ℓ + 1, s], otherwise

Lemma 6.2 provides the required cross matching. Noting that |Sn,kh,s−1| − (1 − ε)
(
n−1
kh−1

)
≤ |Fh| ≤

|Sn,kh,Jh
| + .1ε(s − |Jh|)

(
n−1
kh−1

)
, we see that |Jh| = s − 1 = ℓ, h = s and Jh = A. Now for each

i ∈ [s−1], as ai ∈ A = Jh we can apply the same argument switching the roles of Fi and Fh to deduce
µ
(
(Fi)

∅
Ji

)
< .1εkh/n and Ji = A. The theorem follows.

6.2 The exact result
To complete the proof of the Huang–Loh–Sudakov Conjecture we will upgrade the approximate result
of the previous subsection to an exact result via the following bootstrapping lemma (stated in a more
general form than needed here as we will also use it for our other Turán results).

Lemma 6.3. Let C ≫ β−1 ≫ d ≥ 1 and Fi ⊂
(
[n]
ki

)
for all i ∈ [s] with

∑s
i=1 ki ≤ n/C. Suppose

F1, . . . ,Fs are cross free of some hypergraph G = {e1, . . . , es} with |ei| = ki for each i ∈ [s] and
es ∩

⋃s−1
i=1 ei = ∅. If

∑s−1
i=1 (1− µ(Fi)) ≤ α ∈ (0, β) then µ(Fs) ≤ (αks/n)

d.

Proof. Let k = n − n/C and Gs = F↑
s ∩

(
[n]
k

)
. Then F1, . . . ,Fs−1,Gs are cross free of G′ obtained

from G by enlarging es to e′s of size k. Suppose for contradiction that µ(Fs) > (αks/n)
d. Let t ∈ [ks]

be minimal so that |Fs| = (αks/n)
d
(
n
ks

)
≥

(
n−t
ks−t

)
. Then (αks/n)

d < (ks/n)
t−1, so if t > 2d then

α < (ks/n)
t/2d. By Kruskal-Katona |Gs| ≥

(
n−t
k−t

)
, so µ(Gs) ≥ (1 − 2/C)t >

√
α, as if t ≤ 2d then

(1 − 2/C)t > (1 − 2/C)2d >
√
β or otherwise α2d/t < ks/n ≤ C−1 < (1 − 2/C)4d. Now we let

ϕ : V (G′) → [n] be a uniformly random injection. Let E be the event that ϕ(e′s) /∈ Gs or ϕ(ei) /∈ Fi for
some i ∈ [s− 1]. Then 1 = P(E) ≤ 1− µ(Gs) +

∑
i∈[s−1](1− µ(Fi)) < 1−

√
α+ α, contradiction.

Theorem 1.2 will now follow by combining Theorem 6.1 and Lemma 6.3.

Proof of Theorem 1.2. Let 0 < 1/C ≪ ε ≪ 1 and Fi ⊂
(
[n]
ki

)
with |Fi| ≥ |Sn,ki,s−1| and ki ≤ n

Cs for
all i ∈ [s]. Suppose F1, . . . ,Fs have no cross matching. By Theorem 6.1 there is J ∈

(
[n]
s−1

)
such that

µ
(
(Fi)

∅
J

)
= εiki/|V | with V = [n] \ J and εi ≤ ε for all i ∈ [s]. We may assume that εs is maximal.

Next we claim that we can list the elements of J as j = (j1, . . . , js−1) so that

Mj :=
∑

i∈[s−1]

µ
(
(Fi)

ji
J

)
≥ s− 1− εs.

To see this, we note that EjMj = Ei∈[s−1]

∑
j∈J µ

(
(Fi)

j
J

)
when j is uniformly random. As each

(Fi)
I
J ⊂ (Sn,ki,s−1)

I
J whenever ∅ ≠ I ⊂ J and µ(Fi) ≥ µ(Sn,ki,s−1), we have 0 ≤ µ(Fi)−µ(Sn,ki,s−1) ≤

µ((Fi)
∅
J)− k|V |−1

∑
j∈J(1− µ((Fi)

j
J)), so

∑
j∈J µ((Fi)

j
J)) ≥ s− 1− εs. The claim follows.

Now let Hi = (Fi)
ji
J ⊂

(
V

k−1

)
for all i ∈ [s − 1], and Hs = (Fs)

∅
J ⊂

(
V

k−1

)
. Then H1, . . . ,Hs have

no cross matching,
∑

i∈[s−1](1− µ(Hi)) ≤ εs and µ(Hs) = εsks/|V |. Therefore εs = 0 by Lemma 6.3
with d = 1. By choice of εs we deduce εi = 0 for all i ∈ [s]. Thus Fi = Sn,ki,J for all i ∈ [s].
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7 Critical graphs
In this section we prove Theorem 1.6, which gives exact Turán results for expanded critical r-graphs
of bounded degree. In fact, we will prove the following strong stability version.

Theorem 7.1. Let G ∈ G(r,∆, s) be critical and C ≫ β−1 ≫ dr∆.
Suppose F ⊂

(
[n]
k

)
with C ≤ k ≤ n/Cs is G+-free and |F| ≥ |Sn,k,σ−1| − ε

(
n−1
k−1

)
with ε ∈ (0, β).

Then there is J ∈
(

[n]
σ−1

)
with |F \ Sn,k,J | ≤ εd

(
n−1
k−1

)
.

Furthermore, if k ≤
√
n and |F| ≥ |Sn,k,J | − β

(
n−r
k−r

)
then F ⊂ Sn,k,J .

In the first subsection we will describe the strategy of the proof and complete the proof, assuming
a certain bootstrapping lemma that will be proved in the second subsection.

7.1 Strategy
Recall that an r-graph G is critical if it has an edge e such that σ(G \ e) = τ(G \ e) < τ(G) = σ(G).
Thus we can adopt the following set-up.

Setup 7.2. Let G ∈ G′(r, s,∆) be critical. Fix a crosscut S in G+(r + 1) with |S| = σ := σ(G) and
{Gx

x : x ∈ S} = {Hi : i ∈ [σ]} with |Hσ| = 1. Let I = {i ∈ [σ − 1] : V (Hi) ∩ V (Hσ) ̸= ∅}.

The following bootstrapping lemma will be proved in the next subsection. It shows that if we
cannot find a cross embedding of H+

1 , . . . ,H+
σ as in the above set up, if all but one of the families are

nearly complete then the last must be very small.

Lemma 7.3. Let G,H1, . . . ,Hσ be as in Setup 7.2. Let C ≫ β−1 ≫ dr∆ and Fi ⊂
(
[n]
ki

)
with

ki ∈ [k/2, k] for i ∈ [σ], where C ≤ k ≤ n/Cs. Suppose Fσ is G+-free,
∑σ−1

i=1 (1 − µ(Fi)) ≤ ε ≤ β,
µ(Fσ) ≥ εdk/n and 1− µ(Fi) ≤ ε0 := 2ε/σ for all i ∈ I. Then F1, . . . ,Fσ cross contain H+

1 , . . . ,H+
σ .

We conclude this subsection by deducing Theorem 7.1 from Lemma 7.3.

Proof of Theorem 7.1. By Theorem 1.9 (refined junta approximation) there is J ∈
(

[n]
σ−1

)
such that

|F \ Sn,k,J | = δ
(
n−1
k−1

)
with δ−1 ≫ dr∆. We write J = {j1, . . . , jσ−1}, Fi = F ji

J for i ∈ [σ − 1] and
Fσ = F∅

J . Note that Fσ is G+-free. We may assume I = [|I|] and |F1| ≥ · · · ≥ |Fσ−1|. Now

µ(F) ≤ µ(F∅
J) + µ(Sn,k,J)− k−1

n−|J|

σ−1∑
i=1

(1− µ(Fi))

≤ δk/n+ µ(F) + εk/n− k
2n

σ−1∑
i=1

(1− µ(Fi)),

so
∑σ−1

i=1 (1−µ(Fi)) ≤ 2(ε+δ). Now for each i ∈ I we have 1−µ(Fi) ≤ 4r∆(ε+δ)/σ as if σ ≤ 2|I| ≤ 2r∆

this follows from 1− µ(Fi) ≤ 2(ε+ δ), or otherwise from 1− µ(Fi) ≤ 2(ε+δ)
σ−|I| .

As F1, . . . ,Fσ are cross free of H+
1 , . . . ,H+

σ as in Setup 7.2, Lemma 7.3 with (2r∆(ε + δ), 2d) in
place of (ε, d) gives δk/n = µ(Fσ) < (2r∆(ε+δ))2dk/n. As ε−1, δ−1 ≫ dr∆ we have ((2r∆)(ε+δ))2d =

(2r∆)2d
∑2d

i=0

(
2d
i

)
εiδ2d−i < (εd + δ)/2, so δ < εd, i.e. |F∅

J | = |Fσ| < εd
(
n−1
k−1

)
.

Finally, let k ≤
√
n and suppose for contradiction that |F| ≥ |Sn,k,J | − β

(
n−r
k−r

)
but there is some

A ∈ F \Sn,k,J . By the previous statement with d = 1 and ε = β
(
n−r
k−r

)(
n−1
k−1

)−1
we have |F∅

J | ≤ β
(
n−r
k−r

)
,

so |Sn,k,J \F| ≤ 2β
(
n−r
k−r

)
. We fix any R ∈

(
A
r

)
and a bijection ϕ : As → R, where Hσ = {As} and define

G1, . . . ,Gs−1 by Gj = (Fi)
ϕ(A′

j)

A whenever Aj is an edge of Hi with A′
j = Aj ∩As. For each j ∈ [s− 1],

writing rj = |A′
j |+1 ∈ [r], we have

(
n−k−rj
k−rj

)
− |Gj | ≤ |Sn,k,J \F|, so as

(
n−k−r
k−r

)
≥ .1

(
n

k−r

)
for k ≤

√
n

we have 1 − µ(Gj) ≤ 20β < 1/2. However, now G1, . . . ,Gs−1 cross contain A1 \ As, . . . , As−1 \ As by
Lemma 2.9, so we have the required contradiction.
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7.2 Bootstrapping
Now we complete the proof of Theorem 7.1 by proving Lemma 7.3. The idea is to reduce to the case
that the critical edge is disjoint from all other edges, so that we can apply Lemma 6.3.

Proof of Lemma 7.3. Let G,H1, . . . ,Hσ be as in Setup 7.2. Let C ≫ β−1 ≫ dr∆ and Fi ⊂
(
[n]
ki

)
with

ki ∈ [k/2, k] for i ∈ [σ], where C ≤ k ≤ n/Cs. Suppose
∑s−1

i=1 (1− µ(Fi)) ≤ ε ≤ β, µ(Fσ) ≥ εdk/n and
1− µ(Fi) ≤ ε0 := 2ε/σ for all i ∈ I.

We need to show that F1, . . . ,Fσ cross contain H+
1 , . . . ,H+

σ . Write G = {A1, . . . , As} where
Hσ = {As} and A = As ∩

⋃
i<s Ai. It suffices to find an injection ϕ : A → [n] such that Lemma

6.3 provides a cross embedding of e+1 , . . . , e
+
s in G1, . . . ,Gs, where for each edge Aj ∈ Hi we define

ej = Aj \As and Gj = (Fi)
ϕ(A∩Aj)

ϕ(A) . We note that if A∩Aj = ∅ then 1− µ(Gj) ≤ 2(1− µ(Fi)) for any
choice of ϕ. Also, for uniformly random ϕ we have P(µ(Gj) ≥ 1−√

ε0) > 1−√
ε0 whenever i ∈ I by

Lemma 4.2.
Next suppose µ(Fσ) ≥ e−kβ . Then Fairness (Proposition 4.3) gives P(µ(Gs) ≥ µ(Fσ)/2) > 1/2. By

a union bound we can fix ϕ with
∑s−1

i=1 (1−µ(Gi)) ≤ 2ε+ |I|√ε0 ≤ α := 2∆
√
ε and µ(Gs) ≥ µ(Fσ)/2 ≥

(αk/n)3d. Then Lemma 6.3 applies as required.
It remains to consider the case µ(Fσ) < e−kβ . We will apply Lemma 4.4 to show that we can

fix ϕ with
∑s−1

i=1 (1 − µ(Gi)) ≤ 2ε + |I|√ε0 ≤ α := 2∆
√
ε as above and µ(Gs) ≥ c := µ(Fσ)/2k

r ≥
ekβµ(Fσ) · µ(Fσ)/2k

r ≥ µ(Fσ)
2 ≥ (αk/n)6d. Again this will suffice by Lemma 6.3. Lemma 4.4 with

ℓ = k gives P(µ(Gs) ≥ c) ≥ (µ(Fσ)/2)
r/k ≥ ε1/4n−2r/k, so we are done unless ε1/4n−2r/k < |I|√ε0,

which implies σ2n−8r/k < (2∆)4ε. As ε ≪ ∆−1 this implies k < nβ , say. Furthermore, we can assume
Fσ is (2r, µ(Fσ)βn/sk)-global, otherwise we can apply the above argument with some (Fσ)

R
R in place

of Fσ to get P(µ(Gs) ≥ c) ≥ (µ(Fσ)βn/2sk)
r/k ≥ ε1/4s−2r/k > |I|√ε0.

Now we claim that ∂r
cFσ is G-free. This will suffice to complete the proof, as then Lemma 4.4

gives the improved estimate µ(∂r
cFσ) ≥ (εd/ks)2r/k − (s/n)β > |I|√ε0, using s ≤ rσ < n8r/k. To

see the claim, we suppose ϕ(G) ⊂ ∂r
cFσ and will obtain a contradiction by finding a cross matching

in H1, . . . ,Hs, where for each edge Aj of G we let Hj = (Fσ)
ϕ(Aj)
Imϕ . We verify the conditions of

Lemma 5.7, with (s, s, d, 2) in place of (s,m, d,K). As Fσ is (2r, µ(Fσ)βn/sk)-global, each Hj is
(r, 2µ(Fσ)βn/sk)-global by Lemma 2.2. Also, Fσ is (β−1s, µ(Fσ)/2)-uncapturable by Lemma 2.4, so
each µ(Hj) ≥ µ(Fσ)/2 ≥ εdk/2n, and each Hj is (s/2β, εdk/4n)-uncapturable by Lemma 2.4. As
σ2n−8r/k < (2∆)4ε and k < nβ we have εdk/n > (3sk/n)d, and so the conditions of Lemma 5.7 hold.
But this is a contradiction, as then H1, . . . ,Hs cross contain a matching. Therefore ∂r

cFσ is G-free, as
claimed.

8 The Füredi–Jiang–Seiver Conjecture
In this section we prove the Füredi–Jiang–Seiver Conjecture on the Turán numbers of expanded paths.
As previously mentioned, for paths of odd length the conjecture follows from our result on critical
graphs (Theorem 1.6), so it remains to consider paths of even length. We will consider the more general
setting of expansions of (normal) graphs (r-graphs with r = 2) satisfying the following generalised
criticality property. Recall that we denote the crosscut and transversal numbers of an r-graph G by
σ(G) and τ(G), and that σ(G) ≥ τ(G). Consider any G with τ(G) = σ(G). We say G is a1-degree-
critical if (i) σ(G − x) < σ(G) for some x of degree |Gx

x| ≤ a1, and (ii) τ(G − x) = τ(G) for any x
with |Gx

x| < a1. We say G is a2-matching-critical if (i) σ(G \M) < σ(G) for some matching M with
|M | ≤ a2, and (ii) τ(G \M) = τ(G) for any matching M with |M | < a2. We say G is (a1, a2)-critical
if it is both a1-degree-critical and a2-matching-critical.

We note that even paths and cycles are (2, 2)-critical, and that any G is critical (in the sense
defined above) if and only if G is (a1, 1)-critical, where a1 is the minimum possible degree of any
vertex belonging to any minimum size crosscut of G+. The significance of the generalised definition is
that it enables to show that the following natural construction is extremal for the Turán problem for
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G+. For any T ⊂ [n] we write Gn,k(T ) = {A ∈
(
[n]
k

)
: T ⊂ A} for the family in

(
[n]
k

)
generated by T .

For T ⊂ {0, 1}n we write Gn,k(T ) =
⋃

T∈T Gn,k(T ). We let Fn,k,G = Gn,k(T ) where T is the disjoint
union of σ(G) − 1 singletons and a graph Fa1a2

with as many edges as possible subject to having no
vertex of degree ≥ a1 or matching of size ≥ a2. Then Fn,k,G is G+-free by definition of (a, b)-criticality.
We will show that it is extremal. When G is a path of even length this will complete the proof of the
Füredi–Jiang–Seiver Conjecture.

Theorem 8.1. Let G ∈ G(2,∆, s) be (a1, a2)-critical, C ≫ a2∆ and C ≤ k ≤ n/Cs. Then
ex(n,G+(k)) = |Fn,k,G|.

Moreover, we will prove the following strong stability version.

Theorem 8.2. Let G ∈ G(2,∆, s) be (a1, a2)-critical and C ≫ β−1 ≫ a2d∆.
Suppose F ⊂

(
[n]
k

)
with C ≤ k ≤ n/Cs is G+-free. If |F| ≥ |Sn,k,σ−1| then |F\Gn,k(T )| ≤ β−1

(
n−3
k−3

)
for some T = {{x} : x ∈ J} ∪ F where J ∈

(
[n]
σ−1

)
and F ⊂

(
[n]\J

2

)
with |F | ≤ |Fa1a2

|.
Moreover, if |F| ≥ |Fn,k,G| − ε

(
n−2
k−2

)
with ε ∈ (0, β) then µ(F \ G) ≤ (εk/n)d for some copy G of

Fn,k,G, where if k ≤
√
n then F ⊂ G.

Throughout this section we adopt the following set up.

Setup 8.3. Let G ∈ G′(2, s,∆) be (a1, a2)-critical with σ(G) = σ. Let B = {Bi : i ∈ [a]} be a r-graph
matching with r ∈ [2], and B′ = {B′

i : i ∈ [a]} ⊂ G, where if r = 2 then a = a2 and each B′
i = Bi or if

r = 1 then a = a1 and each B′
i = Bi ∪ {x} for some vertex x of degree a. Let S = {s1, . . . , sσ−1} be a

crosscut in (G \ B′)+ and let Hi = Gsi
si for i ∈ [σ − 1]. Let I = {i ∈ [σ − 1] : V (Hi) ∩ V (B) ̸= ∅}.

We prove a bootstrapping lemma in the next subsection and then deduce Theorem 8.2 in the
following subsection.

8.1 Bootstrapping
In this subsection we prove the following bootstrapping lemma, which is analogous to Lemma 7.3, ex-
cept that rather than concluding that some family is small we conclude that some family is capturable.

Lemma 8.4. With notation as in Setup 8.3, let C ≫ β−1 ≫ ad∆ and C ≤ k ≤ n/Cs. Let Fi ⊂(
[n]
ki

)
with ki ∈ [k/2, k] for i ∈ [σ − 1] and F ′

i ⊂
(
[n]
k′
i

)
with k′i ∈ [k/2, k] for i ∈ [a] be such that

F1, . . . ,Fσ−1,F ′
1, . . . ,F ′

a are cross free of H+
1 , . . . ,H+

σ−1, B
+
1 , . . . , B+

a . Suppose
∑s−1

i=1 (1 − µ(Fi)) ≤
ε ≤ β and 1− µ(Fi) ≤ ε0 := 2ε/σ for all i ∈ I. Then some F ′

i is (β−1, γi + (k/n)d)-capturable, where
γi < εd, and if F ′

i is G+-free then γi < εdk/n.

The proof requires the following lemma which is analogous to Lemma 6.3.

Lemma 8.5. Let C ≫ C ′ ≫ ad, Fi ⊂
(
[n]
ki

)
for i ∈ [s] and F ′

i ⊂
(
[n]
k′
i

)
for i ∈ [a] with

∑s
i=1 ki +∑a

i=1 k
′
i ≤ n/C. Suppose (F1, . . . ,Fs,F ′

1, . . . ,F ′
a) are cross free of G = (e1, . . . , es, e

′
1, . . . , e

′
a) with

each |ei| = ki, |e′i| = k′i and e ∩ e′i = ∅ for all i ∈ [a] and e′i ̸= e ∈ G. If
∑s

i=1(1 − µ(Fi)) < 1/2 then
some F ′

i is (C ′, (k′i/n)
d)-capturable.

Proof. Let k = n/2a and for each i ∈ [a] let Gi = (F ′
i)

↑ ∩
(
[n]
k

)
. Then (F1, . . . ,Fs,G1, . . . ,Ga) are cross

free of G′ obtained from G by enlarging each e′i to e∗i of size k. Suppose for contradiction that each
F ′

i is (C ′, (k′i/n)
d)-uncapturable. Then an argument of Dinur and Friedgut, applying Russo’s Lemma

and Friedgut’s junta theorem (see Lemma 2.7 in [4]), shows that each µ(Gi) > 1 − 1/2a. Consider
a uniformly random injection ϕ : V (G′) → [n]. Let E be the event that some ϕ(ei) /∈ Fi or some
ϕ(e∗i ) /∈ Gi. Then 1 = P(E) ≤

∑
i∈[s](1− µ(Fi)) +

∑
i∈[a](1− µ(Gi)) < 1/2 + 1/2, contradiction.
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Proof of Lemma 8.4. With notation as in Setup 8.3, let C ≫ β−1 ≫ b ≫ d ≫ a∆ and C ≤ k ≤ n/Cs.
Let Fi ⊂

(
[n]
ki

)
with ki ∈ [k/2, k] for i ∈ [σ− 1] and F ′

i ⊂
(
[n]
k′
i

)
with k′i ∈ [k/2, k] for i ∈ [a] be such that

F1, . . . ,Fσ−1,F ′
1, . . . ,F ′

a are cross free of H+
1 , . . . ,H+

σ−1, B
+
1 , . . . , B+

a . Suppose
∑s−1

i=1 (1−µ(Fi)) ≤ ε ≤
β and 1−µ(Fi) ≤ ε0 := 2ε/σ for all i ∈ I. Suppose for contradiction that each F ′

i is (β−1, γi+(k/n)d)-
uncapturable, where either γi ≥ εd or F ′

i is G+-free and γi ≥ εdk/n.
We start by upgrading uncapturability to globalness. By Lemma 5.5 with (b, 4, a) in place of

(b, r,m) and each αi = n/kb, βi = γi + (k/n)d, noting that 8b ≤ k ≤ n/8a(n/bk), 4ba < β−1 and
(n/kb)b(k/n)d > n/k ≫ 1, there is a set S′ partitioned into S′

1, . . . , S
′
a with each |S′

i| ≤ 8b such that

each G0
i := (F ′

i)
S′
i

S′ is (8, 4µ(G0
i )n/kb)-global with µ(G0

i ) > α
1S′

i
̸=∅

i βi/2. We have 2µ(G0
i ) > εd + (k/n)d,

unless F ′
i is G+-free and S′

i = ∅, in which case G0
i is a restriction of F ′

i , so is also G+-free, with
2µ(G0

i ) > εdk/n+ (k/n)d.
Next we define G′

i := (F ′
i)

Si

S with enhanced globalness, obtaining S partitioned into S1, . . . , Sa by
letting Si = S′

i if G0
i is (4, µ(G0

i )βn/sk)-global, or otherwise letting Si = S′
i ∪ Ri where |Ri| ≤ 4 and

G1
i := (G0

i )
Ri

Ri
has µ(G1

i ) > µ(G0
i )βn/sk. We also define Gi = (Fi)

∅
S for i ∈ [σ − 1] and note that each

1− µ(Gi) ≤ 2(1− µ(Fi)).
By Lemma 2.2, each G1

i or G′
i is (4, 2µ(G0

i )βn/sk)-global if Ri = ∅ or (4, 8µ(G0
i )n/kb)-global oth-

erwise. By Lemma 2.4, each G1
i is (b/8, µ(G1

i )/2)-uncapturable, so µ(G′
i) > µ(G1

i )/2 ≥ µ(G0
i )/2. Thus

2β−1µ(G′
i) ≥ γ′

i + (k/n)d, and

(i) G′
i is (4, 8µ(G′

i)n/kb)-global with γ′
i ≥ εd/s, or

(ii) G′
i is G+-free and (4, 2µ(G′

i)βn/sk)-global with γ′
i ≥ εdk/n.

Indeed, if option (i) does not hold then G0
i is G+-free with 2µ(G0

i ) > εdk/n + (k/n)d, and also is
(4, µ(G0

i )βn/sk)-global, so Ri = ∅ and G′
i is a restriction of G0

i , so is also G+-free.
We will show that G1, . . . ,Gσ−1,G′

1, . . . ,G′
a cross contain H+

1 , . . . ,H+
σ−1, B

+
1 , . . . , B+

a , thus obtaining
the required contradiction. It suffices to find an injection ϕ : B → [n], where B =

⋃a
i=1 Bi, such that

Lemma 8.5 provides a cross embedding of e+1 , . . . , e
+
s in G1, . . . ,Gs, where for each edge Aj ∈ Hi we

define ej = Aj \B and Hj = (Gi)
ϕ(B∩Aj)

ϕ(B) , or if Aj = Bi we define ej = Aj \B = ∅ and Hj = (G′
i)

ϕ(Bi)
ϕ(B) .

We note that if B ∩ Aj = ∅ then each 1 − µ(Hj) ≤ 2(1 − µ(Gi)) for any ϕ. We consider ϕ
obtained by choosing independent uniformly random injections ϕi : Bi → [n] for each i ∈ [a]. Then
P(ϕ is injective) ≥ 1− 2a2/n and P(µ(Hj) ≥ 1−√

ε0) > 1− 2
√
ε0 whenever Aj ∈

⋃
i∈I Hi by Lemma

4.2. We write Ei for the event that ϕi(Bi) ∈ ∂ciG′
i, where ci = b−.3µ(g′i). It suffices to show that

conditional on Ei each H′
i := (G′

i)
ϕi(Bi)
ϕ(B) is (

√
b, (k/n)2d)-uncapturable, and that P(Ei) ≥ ε

1/3a
0 .

For uncapturability, we recall that G′
i is (4, 8µ(G′

i)n/kb)-global with 2β−1µ(G′
i) ≥ (k/n)d. Thus H′

i

and H′′
i := (G′

i)
ϕi(Bi)
ϕi(Bi)

are (2, 8µ(G′
i)n/kb)-global by Lemma 2.2. Conditional on Ei we have µ(H′′

i ) > ci,
so H′′

i is (b.7/16, µ(H′′
i )/2)-uncapturable by Lemma 2.4. Then µ(H′

i) ≥ µ(H′′
i )/2 ≥ b−.3µ(G′

i)/4, so H′
i

is (b.7/32, µ(H′
i)/2)-uncapturable by Lemma 2.4, and so (

√
b, (k/n)2d)-uncapturable.

It remains to show P(Ei) ≥ ε
1/3a
0 . We may assume µ(G′

i) < e−kβ , otherwise this holds easily by
Fairness (Proposition 4.3). As 2β−1µ(G′

i) ≥ (k/n)d this gives k < nβ . By Lemma 4.4 with ℓ = b.1 we
are done unless ε

1/3a
0 > P(Ei) = µ(∂ciG′

i) ≥ (µ(G′
i)/2)

2/ℓ, which implies γ′
i + (k/n)d ≤ 2β−1µ(G′

i) <

(ε/s)b
.05

. As γ′
i < εd/s we have option (ii) above, so G′

i is G+-free. As εdk/n ≤ γ′
i < (ε/s)b

.05

we also
have s < εnb−.05

.
Now we claim that ∂2

ciG
′
i is G-free. This will suffice to complete the proof, as then Lemma 4.4

gives the improved estimate µ(∂2
ciG

′
i) ≥ (εdk/sb+k/n− (s/n)2)b

−.02

> (ε/s)b
−.01

. To see the claim, we
suppose ϕ′(G) ⊂ ∂2

ciG
′
i and will obtain a contradiction by finding a cross matching in A1, . . . ,As, where

for each edge Aj of G we let Aj = (G′
i)

ϕ′(Aj)
Imϕ′ . We verify the conditions of Lemma 5.7, with (s, s, d, 2) in

place of (s,m, d,K). As G′
i is (4, 2µ(G′

i)βn/sk)-global, each Hj is (2, 4µ(G′
i)βn/sk)-global by Lemma

2.2. Also, G′
i is (s/4β, µ(G′

i)/2)-uncapturable by Lemma 2.4, so each µ(Hj) ≥ µ(G′
i)/2 ≥ βεdk/4n,
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and each Hj is (s/8β, βεdk/8n)-uncapturable by Lemma 2.4. As s < εnb−.05

and k < nβ we have
βεdk/8n > (3sk/n)d, so the required conditions hold.

8.2 Strong stability
We conclude with the proof of the main result of this section.

Proof of Theorem 8.2. Let G ∈ G(2,∆, s) be (a1, a2)-critical and C ≫ β−1 ≫ b ≫ d ≫ a2∆. Suppose
F ⊂

(
[n]
k

)
with C ≤ k ≤ n/Cs is G+-free and |F| ≥ |Sn,k,σ−1|.

By Theorem 1.9 (refined junta approximation) there is J ∈
(

[n]
σ−1

)
such that |F \ Sn,k,J | = δ

(
n−1
k−1

)
with δ−1 ≫ bd∆. We write J = {j1, . . . , jσ−1}, let Fi = F ji

J for i ∈ [σ−1], say with |F1| ≥ · · · ≥ |Fσ−1|,
and note that F∅

J is G+-free. As in the proof of Theorem 7.1, we have
∑σ−1

i=1 (1 − µ(Fi)) ≤ 2δ, so
1− µ(Fi) ≤ 4r∆δ/σ for any i ≤ min{r∆, σ − 1}.

As G is a2-matching-critical, we can define H2
1 , . . . ,H

2
σ−1, B2

1 , . . . , B
2
a2

and I2 as in Setup 8.3
with r = 2 and a = a2, where we identify I2 with [|I2|]. Letting F ′

i = F∅
J for i ∈ [a2], we have

F1, . . . ,Fσ−1,F ′
1, . . . ,F ′

a2
cross free of (H2

1 )
+, . . . , (H2

σ−1)
+, (B2

1)
+, . . . , (B2

a2
)+, so F∅

J is (b, (2δ)dk/n+
(k/n)d)-capturable by Lemma 8.4. We fix J ′ ∈

(
[n\J]

b

)
so that µ(F∅

J∪J′) < (2δ)dk/n+ (k/n)d.
As G is a1-degree-critical, we can define H1

1 , . . . ,H
1
σ−1, B1

1 , . . . , B
1
a and I1 as in Setup 8.3 with

r = 1 and a = a1, where we identify I1 with [|I1|]. For each x ∈ J ′, letting F ′
i = Fx

J∪{x} for i ∈ [a1],
we have F1, . . . ,Fσ−1,F ′

1, . . . ,F ′
a1

cross free of (H1
1 )

+, . . . , (H1
σ−1)

+, (B1
1)

+, . . . , (B1
a2
)+, so Fx

J∪{x} is
(b, (2δ)dk/n + (k/n)d)-capturable by Lemma 8.4. We fix Jx ∈

(
[n]\(J∪{x})

b

)
so that µ((Fx

J∪{x})
∅
Jx
) <

(2δ)dk/n+ (k/n)d.
Let F = {T ∈

(
[n]\J

2

)
: µ(FT

T∪J) > bk/n}. Then F ⊂ F ′ := {xy : x ∈ J ′, y ∈ Jx} and |F ′| ≤ b2.
Writing T = {{x} : x ∈ J}∪F , we have |F \Gn,k(T )| ≤ |F∅

J∪J′ |+
∑

x∈J′ |Fx
J∪{x}∪Jx

|+
∑

T∈F ′ |FT
T∪J |,

so µ(F \ Gn,k(T )) ≤ ((2δ)dk/n + (k/n)d)(1 + bk/n) + (bk/n)3. Writing G := Gn,k(T ), as |F \ G| ≥
|F \Sn,k,J |−|Gn,k(F )| we also have µ(F\G) ≥ δk/n−(bk/n)2. We deduce δk/n ≤ (2δ)dk/n+2(bk/n)2,
so δ ≤ 3bk/n, giving |F \ G| ≤ 2b3

(
n−3
k−3

)
.

To complete the proof of the first statement of the theorem, it remains to show |F | ≤ |Fa1a2
|.

To see this, note that otherwise F contains some F0 = (Ti : i ∈ [ar]), where r = 2 and F0 is a
matching or r = 1 and F0 is a star. Writing F ′

i = FTi

J∪Ti
, we have F1, . . . ,Fσ−1,F ′

1, . . . ,F ′
a2

cross
free of (Hr

1 )
+, . . . , (Hr

σ−1)
+, (Br

1)
+, . . . , (Br

ar
)+, so some F ′

i is (b/2, (k/n)d)-capturable by Lemma 8.4.
However, µ(F ′

i) > bk/n as Ti ∈ F , so we have a contradiction.
Now suppose |F| ≥ |Fn,k,G| − ε

(
n−2
k−2

)
with ε ∈ (0, β). We have

µ(F) ≤ µ(F \ G) + µ(G)− k
2n

σ−1∑
i=1

(1− µ(Fi))− k2

2n2

∑
T∈F

(1− µ(FT
J∪T )),

where µ(F \ G) ≤ 2(bk/n)3 and µ(G) ≤ µ(Fn.k.G) − (|Fa1a2
| − |F |)k2/2n2 ≤ µ(F) + (|Fa1a2

| − |F | +
2ε)k2/2n2. Thus |F | = |Fa1a2

|, so G := Gn,k(T ) is a copy of Fn,k,G, and

σ−1∑
i=1

(1− µ(Fi)) +
∑
T∈F

(1− µ(FT
J∪T )) ≤ 3ε.

Next we suppose for contradiction that µ(F\G) > (εk/n)d. We fix some T ∈
(
[n]\J

2

)
\F with µ(FT

J∪T ) >
(εk/n)d+2. By maximality of Fa1a2

we can fix a matching T1, . . . , Ta2
in F with Ta2

= T . Writing
F ′

i = FTi

J∪Ti
, we have F1, . . . ,Fσ−1,F ′

1, . . . ,F ′
a2

cross free of (H2
1 )

+, . . . , (H2
σ−1)

+, (B2
1)

+, . . . , (B2
a2
)+.

Thus Lemma 6.3 gives the required contradiction, so µ(F \ G) ≤ (εk/n)d, as required.
Finally, let k ≤

√
n and suppose for contradiction that there is some A ∈ F \ G. From the

previous statement we have |G \ F| ≤ 2β
(
n−2
k−2

)
. We fix any T ∈

(
[n]\J

2

)
with T ⊂ A, a matching

25



T1, . . . , Ta2
in F with Ta2

= T , and a bijection ϕ : B2
a2

→ T . Writing A′
j = Aj ∩ As for each edge

Aj of G, where As = B2
a2

, we define G1, . . . ,Gs−1 by Gj = (Fi)
ϕ(A′

j)

A if Aj ∈ Hi with i ∈ [σ − 1] or

Gj = (F∅
J)

ϕ(A′
j)

A if Aj = B2
i with i ∈ [a2 − 1]. For each j ∈ [s − 1], writing rj = |A′

j | + 1 ∈ [2], we
have

(
n−k−rj
k−rj

)
− |Gj | ≤ |G \ F|, so as

(
n−k−2
k−2

)
≥ .1

(
n

k−2

)
for k ≤

√
n we have 1 − µ(Gj) ≤ 20β < 1/2.

However, now G1, . . . ,Gs−1 cross contain A1 \As, . . . , As−1 \As by Lemma 2.9, so we have the required
contradiction.
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